• Title/Summary/Keyword: Beach sand

Search Result 210, Processing Time 0.029 seconds

A Basic Study on the Estimating the Value of Sand Beach using amenities (어메니티요소를 활용한 백사장 가치평가의 기초적 연구)

  • Shin, Bum-Shick;Kim, Kyu-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.373-380
    • /
    • 2012
  • The sandy beach along the east coast of Korea offers beautiful scenery with high-quality sand for leisure, and is also famous for the white-sand and pine-tree which is an important scenic resource. Furthermore, the sandy beach helps to maintain natural environment of the costal area and functionates as a disaster prevention system against high waves. There are two major value evaluation methods, Travel Cost Method and Contingent Valuation Method, to assess the value of coastal sandy beach. Contingent Valuation Method is considered to be more appropriate for simultaneous evaluation on the usefulness and the uselessness of the beach. But in order to apply Contingent Valuation Method to coastal sandy beach evaluation, close examination and investigation on the potential bias, such as on questionnaires, surveys and replies, are required. In this study, the characteristic of primary amenity of sandy beach users is investigated, in prior to evaluating the usefulness and the uselessness of the beach measured by contingent valuation method. The characteristic of amenity on major sandy beaches on the east coast of Korea is studied and compared by diverse value evaluation methods.

Development and application of a technique for detecting beach litter using a Micro-Unmanned Aerial Vehicle

  • Jang, Seon Woong;Kim, Dae Hyun;Chung, Yong Hyun;Seong, Ki Taek;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.351-366
    • /
    • 2014
  • The aim of this study was to develop software for beach litter detection that includes a Graphical User Interface (GUI) and uses images taken by a micro-unmanned aerial vehicle. Videos were taken over Doomo pebble beach, Sogye pebble beach, and Heungnam sand beach on the northeast coast of Geojedo (Geoje Island), Korea. Still images of actual beach litter were obtained from the videos. The image processing involved preprocessing, morphological image processing, and image recognition. Comparison with still images showing beach litter demonstrated that the software could generally detect litter larger than 50 cm in size such as Styrofoam buoys and circular fish traps (excluding small pixel-size ropes). Combining the proposed method with the conventional surveying approach is expected to enhance the accuracy of beach litter detection. The new technique will also aid in predicting the amount of beach litter generated along coastlines, which is currently difficult to monitor.

Shoreline Change Before and After Breakwater Extension at the Gungchon Port, Geundeok-myeon, Samcheok-si, Gangwon-do (강원도 삼척시 근덕면 궁촌항 방파제 확장 전, 후의 해안선 변화)

  • Kim, Young-Jae;Hwang, Sangill;Yoon, Soon-Ock
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.29-38
    • /
    • 2019
  • This study tries to reveal influence of artificial structure construction on shoreline change using DSAS 4.3. Before breakwater extension at the Gungchon Port, beaches at the study area were dominated by long-term erosion and especially, severe shoreline retreat was prevailed at the Wonpyeong Beach that is opened to offshore. During 2 years after the extension leading formation of shadow zone, the Gungchon Beach was rapidly developed due to sand supply to the shadow zone and then stabilized. The shadow zone only affected the northern part of the Wonpyeong Beach, while beaches from the southern part of the Wonpyeong Beach to the Munam Beach was little affected. Beach nourishment and groin construction led beach development at the northern part of the Wonpyeong Beach, while beach erosion from the southern part of the Wonypeong Beach to the Munam Beach was caused by the groin. This study suggests that sufficient consideration before coastal structure construction should be made regardless of purposes.

Characteristics of Beach Change and Sediment Transport by Field Survey in Sinji-Myeongsasimni Beach (신지명사십리 해수욕장에서 현장조사에 의한 해빈변화와 퇴적물이동 특성)

  • Jeong, Seung Myong;Park, Il Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 2021
  • To evaluate the causes of beach erosion in Sinji-Myeongsasimni Beach, external forces, such as tides, tidal currents, and waves, were observed seasonally from March 2019 to March 2020, and the surface sediments were analyzed for this period. In addition, the shoreline positions and beach elevations were regularly surveyed with a VRS GPS and fixed-wing drone. From these field data, the speed of the tidal currents was noted to be insufficient, but the waves were observed to af ect the deformation of the beach. As the beach is open to the southern direction, waves of heights over 1 m were received in the S-SE direction during the spring, summer, and fall seasons. Large waves with heights over 2 m were observed during typhoons in summer and fall. Because of the absence of typhoons for the previous two years from July 2018, the beach area over datum level (DL) as of July 2018 was greater by 30,138m2 compared with that of March 2019, and the beach area as of March 2020 decreased by 61,210m2 compared with that of March 2019 because of four typhoon attacks after July 2018. The beach volume as of March 2019 decreased by 5.4% compared with that of July 2018 owing to two typhoons, and the beach volume as of September 2019 decreased by 7.3% because of two typhoons during the observation year. However, the volume recovered slightly by about 3% during fall and winter, when there were no high waves. According to the sediment transport vectors by GSTA, the sediments were weakly influxed from small streams located at the center of the beach; the movement vectors were not noticeable at the west beach site, but the westward sediment transport under the water and seaward vectors from the foreshore beach were prominently observed at the east beach site. These patterns of westward sediment vectors could be explained by the angle between the annual mean incident wave direction and beach opening direction. This angle was inclined 24° counterclockwise with the west-east direction. Therefore, the westward wave-induced currents developed strongly during the large-wave seasons. Hence, the sand content is high in the west-side beach but the east-side beach has been eroded seriously, where the pebbles are exposed and sand dune has decreased because of the lack of sand sources except for the soiled dunes. Therefore, it is proposed that efforts for creating new sediment sources, such as beach nourishment and reducing wave heights via submerged breakwaters, be undertaken for the eastside of the beach.

Compression Characteristics of Jeju Island Beach Sands (제주 해안지역 모래의 압축 특성)

  • Nam, Jung-Man;Cho, Sung-Hwan;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.103-114
    • /
    • 2007
  • Sands distributed in Jeju island's coastal areas, Korea, can be classified as silicate sand derived from volcanic rock, carbonate sand derived from shells, and mixed sands containing both silicate and carbonate sands. These three types of sands typically exist in Jeju coastal areas. Samples of silicate, carbonate and mixed sands were obtained from Samyang beach, Gimnyeong beach, and Jeju harbor area, respectively. Compression tests were conducted to assess the compression characteristics of these sands. As a result of these tests, each sand showed different behaviors. For Samyang beach sand, it appeared that initial compression is a larger than the other two sands. For Cimnyeong and Jeju harbor sands, however, the additional compression occurred after initial compression. This could result from the crushing, shattering, and rearrangement of sand particles. In addition, settlement behavior of Jeju harbor ground according to the construction stages was analyzed using the measured data. It showed that in addition to the initial elastic compression, a considerable additional compression occurred with time. The settlements of Jeju harbor ground were predicted by using the elastic settlement calculation methods (empirical methods) and the compression test method. The empirical methods, which did not consider the crushing, shattering, and rearrangement of particles could show smaller result than that occurring actually.

The Research of Beach Deformation after Construction of the Jetties

  • Park, Sang-Kil;Han, Chong-Soo;Roh, Tae-Young;Park, O-Young;Ahn, Ik-Seong;Lee, Ji-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.185-191
    • /
    • 2011
  • This research was described the prevention of coastal topographical change and sediment diffusive concentration incoming from small estuary after construction jetties. This structure is constructed to decrease sediment deposition incoming from the upstream river due to the urbanization and industrial development and to minimize effects on the coastal ecosystem. The physical modeling and numerical modeling for waves were conducted to analyze the configuration of Imrang sand beach deformation without and with construction of jetty. The specification of the installed jetty, which is able to control sedimentation concentration was decided based on the prediction of the Imrang beach area changes by space and time. As a result, the jetties constructed in the estuary retarded the rate of sand sediment, so that the effect area of sand sedimentation was obviously decreased. In addition, the measured field data indicated that the sediment deposition inside of dikes could be controlled and the right side area of jetties could be preserved without sediment deposition.

A View of Soil Microbial Contamination on the Three Sandy Beaches in Busan (부산광역시 세 해수욕장 백사장에서 세균 오염도 조사)

  • Huh, Man-Kyu;Cho, Kyung-Soon
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.202-207
    • /
    • 2011
  • Bacterial contamination of beach sand was examined in April, June, July, and August. Twenty four topsoil and subsoil samples were taken from the 1m and 5m points from the coastline in three Busan beaches (Haeundae, Gwanganli, and Songjeong). The 5m points from the coastline showed higher coliform contamination than 1 m points. July showed the highest bacterial contamination on beaches among surveyed months. Coliform contamination in the subsoil was higher than that of the topsoil. The bacterial contamination of 5m points of topsoil and subsoil in June except the Songjeong Beach was higher than those of July and August. We investigated Staphylococcus aureus, Vibrio parahaemolyticus, Vibrio vulnificus, Vibrio cholerae, and Bacillus cereus. Only B. cereus was detected at the beach in August. Although microbiological pollution of the Gwanganli Beach was the highest among three Busan beaches, the degree of contamination was not high compared to those of other countries. However, sandy soil management in public beach for pathogenic microorganisms is needed.

Development Case of Regional Materials for Learning of Geology Units, Primary and Middle School Science at Jaeundo (초·중등과학 지질단원의 학습을 위한 자은도의 지역화 자료 개발 사례)

  • Kim, Hai-gyoung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.1
    • /
    • pp.110-120
    • /
    • 2020
  • It is generally reported that field learning and a class using regional materials motivate learning and give a positive effect on learning of geology unit, science subject. The purpose of this study is to develop and to suggest regional materials for learning of geology unit, science subject at Jaeundo. The results of this study are as follows. Regional materials were developed at three locations (namjin dockyard area, yangsan beach area and dunjang beach area) of the study area. Namjin dockyard area (A site) is composed of terrain of sea cliff, sand beach and mud flat. Sedimentary rocks, weathering phenomenon of rocks and strata of various shape are distributed in sea cliff of A site. Yangsan beach area (B site) is composed of coastal terrain as sea cliff and sand beach about 1.5km long. Sedimentary rocks and rhyolite are distributed in sea cliff of B site. Tafoni formed by weathering process of rocks are developed on sedimentary rock outcrop of B site. Dunjang beach area (C site) is composed of coastal terrain of sea cliff, sand beach about 2km long and sea stack. Stratified sedimentary rocks are distributed in sea cliff of C site. Sea stack located in near halmi island on the west side of dunjang beach area is a good sample showing erosion process of sea cave for a long time. Unique geomorphology and geology phenomena distributed in 3 sites at Jaeundo can be used as regional materials for learning of geology unit, science subject. And, Regional materials shall be used in conjunction with the text book data of geology units. These 3 sites of the study area are worth using as field learning course for elementary and middle school students.

A Study on the Physicochemical Characteristics and Formation Age of Coastal Sand Dunes in the Okjukdong and Dajindong, Daecheong Island (대청도 옥죽동·대진동 사구의 물리·화학적 특성 및 퇴적시기 고찰)

  • Shin, Won Jeong;Kim, Jong Wook;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.63-80
    • /
    • 2018
  • The purpose of this study was to investigate the physicochemical characteristics and formation age of sand dunes in the Okjukdong and Dajindong, Daecheong Island. As a result, most of the sand deposited in Okjukdong were composed of medium sized sand with moderately well sorted. The $SiO_2$ and $Al_2O_3$ accounted for a very high proportion of these deposits. There were some differences in characteristics between the sands in the dune and beach, whereas similar characteristics were observed among the materials (OJ-B, OJ-C and OJ-D) in the dune. In case of Dajindong, heterogeneous geochemical characteristics were found in the lower point. It was estimated that this was due to the influence of Daejin-dong black beach. Age dating results showed that uncovered dunes in Okjukdong were deposited $0.44{\pm}0.02$ ~ $0.50{\pm}0.02ka$, and sand depositsin Dajindong were formed $0.16{\pm}0.01$ ~ $0.18{\pm}0.01ka$. In both Okjukdong and Dajindong, sand deposits estimated to be formed 70 years ago, therefore it can be estimated that sand movement was active throughout the area from about hundred years ago. In this study area, the growth of sand dunes has been active in recent several decades or hundred years. It seems that there were different regions where deposits predominated over time. The source of dune sand was also different from time to time. Since the windbreak forest was established, the natural growth of sand dunes was limited, and sand nourishment was carried out by period. Therefore, in order to protect and continuously utilize coastalsand dunesin Daecheong Island, it is necessary to prepare conservation plan.

Topographic Variability during Typhoon Events in Udo Rhodoliths Beach, Jeju Island, South Korea (제주 우도 홍조단괴해빈의 태풍 시기 지형변화)

  • Yoon, Woo-Seok;Yoon, Seok-Hoon;Moon, Jae-Hong;Hong, Ji-Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.307-320
    • /
    • 2021
  • Udo Rhodolith Beach is a small-scale, mixed sand-and-gravel beach embayed on the N-S trending rocky coast of Udo, Jeju Island, South Korea. This study analyzes the short-term topographic changes of the beach during the extreme storm conditions of four typhoons from 2016 to 2020: Chaba (2016), Soulik (2018), Lingling (2019), and Maysak (2020). The analysis uses the topographic data of terrestrial LiDAR scanning and drone photogrammetry, aided by weather and oceanographic datasets of wind, wave, current and tide. The analysis suggests two contrasting features of alongshore topographic change depending on the typhoon pathway, although the intensity and duration of the storm conditions differed in each case. During the Soulik and Lingling events, which moved northward following the western sea of the Jeju Island, the northern part of the beach accreted while the southern part eroded. In contrast, the Chaba and Maysak events passed over the eastern sea of Jeju Island. The central part of the beach was then significantly eroded while sediments accumulated mainly at the northern and southern ends of the beach. Based on the wave and current measurements in the nearshore zone and computer simulations of the wave field, it was inferred that the observed topographic change of the beach after the storm events is related to the directions of the wind-driven current and wave propagation in the nearshore zone. The dominant direction of water movement was southeastward and northeastward when the typhoon pathway lay to the east or west of Jeju Island, respectively. As these enhanced waves and currents approached obliquely to the N-S trending coastline, the beach sediments were reworked and transported southward or northward mainly by longshore currents, which likely acts as a major control mechanism regarding alongshore topographic change with respect to Udo Rhodolith Beach. In contrast to the topographic change, the subaerial volume of the beach overall increased after all storms except for Maysak. The volume increase was attributed to the enhanced transport of onshore sediment under the combined effect of storm-induced long periodic waves and a strong residual component of the near-bottom current. In the Maysak event, the raised sea level during the spring tide probably enhanced the backshore erosion by storm waves, eventually causing sediment loss to the inland area.