• Title/Summary/Keyword: Bcl2-A1

Search Result 859, Processing Time 0.034 seconds

Harmal Extract Induces Apoptosis of HCT116 Human Colon Cancer Cells, Mediated by Inhibition of Nuclear Factor-κB and Activator Protein-1 Signaling Pathways and Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1947-1959
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the second most common type of cancer worldwide in both men and women. It accounts yearly for approximately 9% of all new cases of cancers. Furthermore, the current chemotherapeutic regimens seem unsatisfactory, so that exploration of novel therapeutic modalities is needed. The present study was undertaken to investigate the inhibitory effects of a crude alkaloid extract (CAERS) of a medicinal herb, Rhazya stricta, on proliferation of CRC HCT116 cells and to elucidate mechanisms of action. To achieve these aims, we utilized MTT, comet, DNA laddering and gene reporter assays, along with Western blot and RT-PCR analyses. Results: We found that CAERS inhibited cell proliferation and induced apoptotic cell death in HCT116 cells. Hallmarks of morphological and biochemical signs of apoptosis were clearly evident. CAERS down-regulated DNA-binding and transcriptional activities of NF-${\kappa}B$ and AP-1 proteins, while up-regulating expression of the Nrf-2 protein. It also down-regulated expression levels of the ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin and VEGF and up-regulated levels of Bax, caspase-3/7 and -9, p53, p21, Nrf-2. Markedly, it promoted mRNA expression levels of cytoprotective genes including the hemeoxygenase-1, NAD(P)H quinine oxidoreductase 1 and UDP-glucuronyltransferase. Conclusions: These findings indicate that CAERS exerts antiproliferative action on CRC cells through induction of apoptotic mechanisms, and suggest CAERS could be a promising agent for studying and developing novel chemotherapeutic agents aimed at novel molecular targets for the treatment of CRC.

Anti-cancer Potentials of Rhus verniciflua Stokes, Ulmus davidiana var. japonica Nakai and Arsenium Sublimatum in Human Gastric Cancer AGS Cells (AGS 인체위암세포에서 건칠, 유근피 및 신석 추출물의 항암 활성 비교 연구)

  • Baek, Ilsung;Im, Lyeng-Hae;Park, Cheol;Cho, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.849-860
    • /
    • 2015
  • The anti-cancer activities of Rhus verniciflua Stokes (GC), Ulmus davidiana var. japonica Nakai (UGP) and arsenium sublimatum (SS) extracts, which have been used Oriental medicine therapy for various diseases, were investigated. The treatment of GC, UGP and SS alone, and combined treatment with GC, UGP and SS did not affect the cell viability in the mouse normal cell lines (RAW 264.7 macrophages and C2C12 myoblasts). However, co-treatment with GC, UGP and SS markedly induces apoptosis in human gastric cancer AGS cells, but not in other various cancer cell lines (human lung cancer A549, colon cancer HCT116, liver cancer Hep3B and bladder T24 cells) as evidenced by formation of apoptotic bodies, chromatin condensation, and accumulation of annexin-V positive cells. Co-treatment with GC, UGP and SS effectively induced the expression levels of Fas and Fas ligand, and inhibited the levels IAP family proteins such as XIAP, cIAP-1 and survivin, and anti-apoptotic Bcl-xL proteins compared with treatment with either agent alone. Combined treatment also significantly induced the loss of mitochondrial membrane potential, which was associated with the activation of caspases (-3, -8, and -9) and degradation of poly (ADP-ribose) polymerase. However, the cytotoxic effects induced by co-treatment with GC, UGP and SS were significantly attenuated by pan-caspases inhibitor, z-VAD-fmk, indicating an important role for caspases. These results indicated that the caspases were key regulators of apoptosis in response to co-treatment of GC, UGP and SS in human gastric cancer AGS cells and further studies will be needed to identify the active compounds.

Ganoderma lucidum Pharmacopuncture for the Treatment of Acute Gastric Ulcers in Rats

  • Park, Jae-Heung;Jang, Kyung-Jun;Kim, Cheol-Hong;Lee, Yoo-Hwan;Lee, Soo-Jung;Kim, Bum-Hoi;Yoon, Hyun-Min
    • Journal of Pharmacopuncture
    • /
    • v.17 no.3
    • /
    • pp.40-49
    • /
    • 2014
  • Objectives: The gastric ulcer is a common disorder of the stomach and duodenum. The basic physiopathology of a gastric ulcer results from an imbalance between some endogenous aggressive and cytoprotective factors. This study examined whether Ganoderma lucidum pharmacopuncture (GLP) would provide protection against acute gastric ulcers in rats. Methods: Sprague-Dawley rats were divided randomly into 4 groups of 8 rats each: normal, control, normal saline (NP) and GLP groups. The experimental acute gastric ulcer was induced by using an EtOH/HCl solution and the normal group received the same amount of normal saline instead of ethanol. The NP and the GLP groups were treated once with injections of saline and GLP, respectively. Two local acupoints were used: CV12 (中脘) which is the alarm point of the Stomach Meridian, and ST36 (足三里), which is the sea point of the Stomach Meridian. The stomachs from the rats in each group were collected and analyzed for gross appearance and histology. Also, immunohistochemistry staining for BAX, Bcl-2 and TGF-${\beta}1$ was performed. Results: Histological observations of the gastric lesions in the control group showed comparatively extensive damage of the gastric mucosa and necrotic lesions had penetrated deeply into the mucosa. The lesions were long, hemorrhagic, and confined to the glandular portions. The lesions were measured microscopically by using the clear depth of penetration into the gastric mucosal surface. The length and the width of the ulcer were measured and the inhibition percentage was calculated. Wound healing of the acute gastric ulcer was promoted by using GLP, and significant alterations of indices in gastric mucosa were observed. Such protection was shown by gross appearance, histology and immunohistochemistry staining for BAX, Bcl-2 and TGF-${\beta}1$. Conclusion: These results suggest that GLP administered at CV12 and ST36 can provide significant protection to the gastric mucosa against an ethanol-induced acute gastric ulcer.

Cultivated Orostachys japonicus Induces Apoptosis in Human Colon Cancer Cells (인체 대장암 세포주 SW480에서 재배 와송의 세포 사멸 유도 효과)

  • Kim, Jae-Yong;Jung, Eun-Jung;Won, Yeong-Seon;Lee, Ju-Hye;Shin, Dong-Young;Seo, Kwon-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.317-323
    • /
    • 2012
  • This study was performed to elucidate the anticancer activities and the mechanism of chloroform fractions from cultivated Orostachys japonicus (CFCOJ) in human colon cancer cells. CFCOJ markedly decreased viable cell numbers in both a dose-dependent and time-dependent manner within SW480 cells. Cell death induced by CFCOJ increased cell populations in the sub-G1 phase, as well as the formation of apoptotic bodies, nuclear condensation, and induced DNA fragmentation. CFCOJ-induced apoptosis was associated with the activation of initiator caspase-8 and -9, as well as the effector caspase-3. CFCOJ also stimulated Bid cleavage, indicating that the apoptotic action of caspase-8-mediated Bid cleavage leads to the activation of caspase-9. CFCOJ increased the expression of the proapoptotic protein, Bax, and decreased the expression of the antiapoptotic protein, Bcl-2. These results indicate that CFCOJ exert anticancer effects on human colon cancer SW480 cells through a caspase-dependent apoptotic pathway.

Effects of alpha-linolenic acid and essential amino acids on the proliferation and differentiation of C2C12 myoblasts

  • Zhou, Dongjie;Li, Xiao-Han;Lee, Song‑Hee;Heo, Geun;Cui, Xiang-Shun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.17-26
    • /
    • 2022
  • Alpha-linolenic acid is an important polyunsaturated fatty acid that exhibits anticancer, anti-inflammatory, and antioxidative effects. In this study, we investigated the protective effects of alpha-linolenic acid on the cell proliferation and differentiation of C2C12 cells under essential amino acid-deficient conditions. Different concentrations of alpha-linolenic acid and essential amino acids were added to the growth and differentiation media. The concentrations of 10 µM of alpha-linolenic acid and 2% essential amino acid were chosen for subsequent experiments. Supplementation with alpha-linolenic acid and essential amino acids improved the proliferation and differentiation of C2C12 cells and significantly increased the mRNA levels of catalase, superoxide dismutase, B-cell lymphoma-2, and beclin-1 as well as the protein levels of PPARγ coactivator-1α compared to those in the controls. Moreover, supplementation with alpha-linolenic acid and essential amino acids reduced the levels of phosphorylated H2A.X variant histone, Bcl-2-associated X, p53, and light chain 3 during C2C12 cell proliferation, and increased the expression levels of myogenic factors 4 (myogenin) and 5 during C2C12 cell differentiation. Overall, we determined that alpha-linolenic acid and essential amino acids maintained the cell proliferation and differentiation of C2C12 cells via their anti-oxidative, anti-apoptotic, and anti-autophagic effects.

Regulation of BAD Protein by PKA, PKCδ and Phosphatases in Adult Rat Cardiac Myocytes Subjected to Oxidative Stress

  • Cieslak, Danuta;Lazou, Antigone
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.224-231
    • /
    • 2007
  • $H_2O_2$, as an example of oxidative stress, induces cardiac myocyte apoptosis. Bcl-2 family proteins are key regulators of the apoptotic response while their functions can be regulated by post-translational modifications including phosphorylation, dimerization or proteolytic cleavage. In this study, we examined the role of various protein kinases in regulating total BAD protein levels in adult rat cardiac myocytes undergoing apoptosis. Stimulation with 0.1 mM $H_2O_2$, which induces apoptosis, resulted in a marked down-regulation of BAD protein, which is attributed to cleavage by caspases since it can be restored in the presence of a general caspase inhibitor. Inhibition of PKC, p38-MAPK, ERK1/2 and PI-3-K did not influence the reduced BAD protein levels observed after stimulation with $H_2O_2$. On the contrary, inhibition of PKA or specifically $PKC{\delta}$ resulted in up-regulation of BAD. Decreased caspase 3 activity was observed in $H_2O_2$ treated cells after inhibition of PKA or $PKC{\delta}$ whereas inhibition of PKA also resulted in improved cell survival. Furthermore, addition of okadaic acid to inhibit selected phosphatases resulted in enhanced BAD cleavage. These data suggest that, during oxidative stress-induced cardiac myocyte apoptosis, there is a caspase-dependent down-regulation of BAD protein, which seems to be regulated by coordinated action of PKA, $PKC{\delta}$ and phosphatases.

Anti-adipogenic Effects of Vibration with Varied Frequencies on 3T3-L1 Preadipocytes (3T3-L1 지방전구세포에 대한 다양한 주파수 진동의 지방 생성 억제 효과)

  • Lee, Yeong Hun;Lee, Seok-Ho;Jung, Haebin;Jung, Yong Chan;Kim, Min Hwan;Lee, Eun Mi;Kim, Chi Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.18-24
    • /
    • 2021
  • Vibration is a mechanical cue that can be applied to adipose tissues for the purpose of treating obesity. However, the exact correlation between vibration and other anti-adipogenic pathways, such as development of cytoskeleton and apoptosis, remains unknown. The objective of this study was to investigate the unknown anti-adipogenic effects of vibration with varied frequencies on preadipocytes. 3T3-L1 preadipocytes were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 5% calf serum at 37 ℃ with 5% CO2 in a humidified incubator. Vibration was generated using Arduino Uno microcontroller and vibration motor module with 1 V DC, and applied to preadipocytes for 3 days. Frequency conditions were set to 20, 55, and 90 Hz. Then, the expressions of p38 pathway, ROCK-1, α-actinin, Bax, Bcl-2, caspase-9, 8, and 3 were analyzed with western blot. As a result, p38 pathway was inhibited in 55 and 90 Hz while ROCK-1 and α-actinin were expressed in 20 Hz. Caspase-3, a terminal apoptotic factor, was activated in 20 Hz via extrinsic pathway rather than intrinsic pathway. Results suggest that various frequencies of vibration can inhibit adipogenesis via different pathways which sheds light on future mechanotransduction applications of vibration for the treatment of obesity.

Protective effects of Panax ginseng berry extract on blue light-induced retinal damage in ARPE-19 cells and mouse retina

  • Hye Mi Cho;Sang Jun Lee;Se-Young Choung
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.65-73
    • /
    • 2023
  • Background: Age-related macular degeneration (AMD) is a significant visual disease that induces impaired vision and irreversible blindness in the elderly. However, the effects of ginseng berry extract (GBE) on the retina have not been studied. Therefore, this study aimed to investigate the protective effects of GBE on blue light (BL)-induced retinal damage and elucidate its underlying mechanisms in human retinal pigment epithelial cells (ARPE-19 cells) and Balb/c retina. Methods: To investigate the effects and underlying mechanisms of GBE on retinal damage in vitro, we performed cell viability assay, pre-and post-treatment of sample, reactive oxygen species (ROS) assay, quantitative real-time PCR (qRT-PCR), and western immunoblotting using A2E-laden ARPE-19 cells with BL exposure. In addition, Balb/c mice were irradiated with BL to induce retinal degeneration and orally administrated with GBE (50, 100, 200 mg/kg). Using the harvested retina, we performed histological analysis (thickness of retinal layers), qRT-PCR, and western immunoblotting to elucidate the effects and mechanisms of GBE against retinal damage in vivo. Results: GBE significantly inhibited BL-induced cell damage in ARPE-19 cells by activating the SIRT1/PGC-1α pathway, regulating NF-kB translocation, caspase 3 activation, PARP cleavage, expressions of apoptosis-related factors (BAX/BCL-2, LC3-II, and p62), and ROS production. Furthermore, GBE prevented BL-induced retinal degeneration by restoring the thickness of retinal layers and suppressed inflammation and apoptosis via regulation of NF-kB and SIRT1/PGC-1α pathway, cleavage of caspase 3 and PARP, and expressions of apoptosis-related factors in vivo. Conclusions: GBE could be a potential agent to prevent dry AMD and progression to wet AMD.

Inhibition of human breast carcinoma by BLC (Sargassum fulvellum) and BLC/HEN Egg in vitro and in vivo

  • Jo, Eun-Hye;Cho, Sung-Dae;Ahn, Nam-Shik;Jung, Ji-Won;Yang, Se-Ran;Park, Joon-Suk;Hwang, Jae-Woong;Lee, Sung-Hoon;Park, Jung-Ran;Kim, Sun-Jung;Park, Hyun-Kyung;Lee, Yong-Soon;Kang, Kyung-Sun
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.1
    • /
    • pp.85-91
    • /
    • 2005
  • Much of the interest on the chemopreventive properties of herbs and plants has been raised, whereas little is regarding to anti-tumor effect of farming and aquatic products. In the present study, the anti-tumor effect of hot-water extract of a seaweed, BLC (Sargassum fulvellum) and BLC/HEN egg was investigated using MCF-7 cells in vitro and in vivo systems. We found that the BLC extract and BLC/HEN egg inhibited cell proliferation in a dose-dependent manner, which might be mediated through up-regulation of p53. Furthermore, this test compound can directly induce apoptosis in MCF-7 cells, which might be mediated through up-regulation of a pro-apoptotic Bax protein and down-regulation of a anti-apoptotic Bcl-2 protein, not by immune system. Nude mice bearing established breast tumors (with exogenous estradiol) were treated with BLC extract and BLC/HEN egg. Treatment BLC extract and BLC/HEN egg caused a 42% and 71% inhibition of tumor growth, respectively. Both agents caused a significant inhibition of volume and weight growth of estrogen independent human breast tumors established from MCF-7 cells. Our results suggested that BLC extract and BLC/HEN egg have the efficacious effect of human breast cancer not only in vitro but also in vivo.

AKT1-targeted proapoptotic activity of compound K in human breast cancer cells

  • Choi, Eunju;Kim, Eunji;Kim, Ji Hye;Yoon, Keejung;Kim, Sunggyu;Lee, Jongsung;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.692-698
    • /
    • 2019
  • Background: Breast cancer is a severe disease and the second leading cause of cancer death in women worldwide. To surmount this, various diagnosis and treatment options for breast cancer have been developed. One of the most effective strategies for cancer treatment is to induce apoptosis using naturally occurring compounds. Compound K (CK) is a ginseng saponin metabolite generated by human intestinal bacteria. CK has been studied for its cardioprotective, antiinflammatory, and liver-protective effects; however, the role of CK in breast cancer is not fully understood. Methods: To investigate the anticancer effects of CK in SKBR3 and MDA-MB-231 cells, cell viability assays and flow cytometry analysis were used. In addition, the direct targets of CK anticancer activity were identified using immunoblotting analysis and overexpression experiments. Invasion, migration, and clonogenic assays were carried out to determine the effects of CK on cancer metastasis. Results: CK-induced cell apoptosis in SKBR3 cells as determined through 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assays, propidium iodide (PI) and annexin V staining, and morphological changes. CK increased the cleaved forms of caspase-7, caspase-8, and caspase-9, whereas the expression of Bcl-2 was reduced by CK. In assays probing the cell survival pathway, CK activated only AKT1 and not AKT2. Moreover, CK inhibited breast cancer cell invasion, migration, and colony formation. Through regulation of AKT1 activity, CK exerts anticancer effects by inducing apoptosis. Conclusion: Our results suggest that CK could be used as a therapeutic compound for breast cancer.