• Title/Summary/Keyword: Bayesian threshold model

Search Result 41, Processing Time 0.024 seconds

Non-chemical Risk Assessment for Lifting and Low Back Pain Based on Bayesian Threshold Models

  • Pandalai, Sudha P.;Wheeler, Matthew W.;Lu, Ming-Lun
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.206-211
    • /
    • 2017
  • Background: Self-reported low back pain (LBP) has been evaluated in relation to material handling lifting tasks, but little research has focused on relating quantifiable stressors to LBP at the individual level. The National Institute for Occupational Safety and Health (NIOSH) Composite Lifting Index (CLI) has been used to quantify stressors for lifting tasks. A chemical exposure can be readily used as an exposure metric or stressor for chemical risk assessment (RA). Defining and quantifying lifting nonchemical stressors and related adverse responses is more difficult. Stressor-response models appropriate for CLI and LBP associations do not easily fit in common chemical RA modeling techniques (e.g., Benchmark Dose methods), so different approaches were tried. Methods: This work used prospective data from 138 manufacturing workers to consider the linkage of the occupational stressor of material lifting to LBP. The final model used a Bayesian random threshold approach to estimate the probability of an increase in LBP as a threshold step function. Results: Using maximal and mean CLI values, a significant increase in the probability of LBP for values above 1.5 was found. Conclusion: A risk of LBP associated with CLI values > 1.5 existed in this worker population. The relevance for other populations requires further study.

Bayesian Inversion of Gravity and Resistivity Data: Detection of Lava Tunnel

  • Kwon, Byung-Doo;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2002
  • Bayesian inversion for gravity and resistivity data was performed to investigate the cavity structure appearing as a lava tunnel in Cheju Island, Korea. Dipole-dipole DC resistivity data were proposed for a prior information of gravity data and we applied the geostatistical techniques such as kriging and simulation algorithms to provide a prior model information and covariance matrix in data domain. The inverted resistivity section gave the indicator variogram modeling for each threshold and it provided spatial uncertainty to give a prior PDF by sequential indicator simulations. We also presented a more objective way to make data covariance matrix that reflects the state of the achieved field data by geostatistical technique, cross-validation. Then Gaussian approximation was adopted for the inference of characteristics of the marginal distributions of model parameters and Broyden update for simple calculation of sensitivity matrix and SVD was applied. Generally cavity investigation by geophysical exploration is difficult and success is hard to be achieved. However, this exotic multiple interpretations showed remarkable improvement and stability for interpretation when compared to data-fit alone results, and suggested the possibility of diverse application for Bayesian inversion in geophysical inverse problem.

INCORPORATING PRIOR BELIEF IN THE GENERAL PATH MODEL: A COMPARISON OF INFORMATION SOURCES

  • Coble, Jamie;Hines, J. W esley
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.773-782
    • /
    • 2014
  • The general path model (GPM) is one approach for performing degradation-based, or Type III, prognostics. The GPM fits a parametric function to the collected observations of a prognostic parameter and extrapolates the fit to a failure threshold. This approach has been successfully applied to a variety of systems when a sufficient number of prognostic parameter observations are available. However, the parametric fit can suffer significantly when few data are available or the data are very noisy. In these instances, it is beneficial to include additional information to influence the fit to conform to a prior belief about the evolution of system degradation. Bayesian statistical approaches have been proposed to include prior information in the form of distributions of expected model parameters. This requires a number of run-to-failure cases with tracked prognostic parameters; these data may not be readily available for many systems. Reliability information and stressor-based (Type I and Type II, respectively) prognostic estimates can provide the necessary prior belief for the GPM. This article presents the Bayesian updating framework to include prior information in the GPM and compares the efficacy of including different information sources on two data sets.

Frequency analysis of storm surge using Poisson-Generalized Pareto distribution (Poisson-Generalized Pareto 분포를 이용한 폭풍해일 빈도해석)

  • Kim, Tae-Jeong;Kwon, Hyun-Han;Shin, Young-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.173-185
    • /
    • 2019
  • The Korean Peninsula is considered as one of the most typhoon related disaster prone areas. In particular, the potential risk of flooding in coastal areas would be greater when storm surge and heavy rainfall occurred at the same time. In this context, understanding the mechanism of the interactions between them and estimating the risk associated with the concurrent occurrence are of particular interests especially in low-lying coastal areas. In this study, we developed a Poisson-Generalized Pareto (Poisson-GP) distribution based storm surge frequency analysis model to combine the occurrence of the exceedance of a threshold, that is the peaks over threshold (POT), within a Bayesian framework. The storm surge frequency analysis technique developed through this study might contribute to the improvement of disaster prevention technology related to storm surge in the coastal area.

Estimation of Genetic Variations for Linear Type Traits and Composite Traits on Holstein Cows (Holstein 젖소의 선형심사형질과 등급형질에 대한 유전변이 추정)

  • 이득환
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.161-168
    • /
    • 2006
  • Genetic parameters for linear type and composite traits were estimated by using Bayesian inference via Gibbs sampling with a multiple threshold animal model in Holstein cows. Fifteen linear type traits and 5 composite traits were included to estimate genetic variance and covariance components in the model. In this study, 30,204 records were obtained in the cows from 305 sires. Heritability estimates for linear type traits had the estimates as high as 0.28~0.64. Heritability estimates for composite traits were also high, when the traits were assumed to be categorical traits. Final score was more correlated with the composite traits than with the linear type traits.

Unsupervised Change Detection Using Iterative Mixture Density Estimation and Thresholding

  • Park, No-Wook;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.402-404
    • /
    • 2003
  • We present two methods for the automatic selection of the threshold values in unsupervised change detection. Both methods consist of the same two procedures: 1) to determine the parameters of Gaussian mixtures from a difference image or ratio image, 2) to determine threshold values using the Bayesian rule for minimum error. In the first method, the Expectation-Maximization algorithm is applied for estimating the parameters of the Gaussian mixtures. The second method is based on the iterative thresholding that successively employs thresholding and estimation of the model parameters. The effectiveness and applicability of the methods proposed here are illustrated by an experiment on the multi-temporal KOMPAT-1 EOC images.

  • PDF

Automatic Estimation of Threshold Values for Change Detection of Multi-temporal Remote Sensing Images (다중시기 원격탐사 화상의 변화탐지를 위한 임계치 자동 추정)

  • 박노욱;지광훈;이광재;권병두
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.465-478
    • /
    • 2003
  • This paper presents two methods for automatic estimation of threshold values in unsupervised change detection of multi-temporal remote sensing images. The proposed methods consist of two analytical steps. The first step is to compute the parameters of a 3-component Gaussian mixture model from difference or ratio images. The second step is to determine a threshold value using Bayesian rule for minimum error. The first method which is an extended version of Bruzzone and Prieto' method (2000) is to apply an Expectation-Maximization algorithm for estimation of the parameters of the Gaussian mixture model. The second method is based on an iterative thresholding algorithm that successively employs thresholding and estimation of the model parameters. The effectiveness and applicability of the methods proposed here were illustrated by two experiments and one case study including the synthetic data sets and KOMPSAT-1 EOC images. The experiments demonstrate that the proposed methods can effectively estimate the model parameters and the threshold value determined shows the minimum overall error.

A Bayesian Analysis of Return Level for Extreme Precipitation in Korea (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Lee, Jeong Jin;Kim, Nam Hee;Kwon, Hye Ji;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.947-958
    • /
    • 2014
  • Understanding extreme precipitation events is very important for flood planning purposes. Especially, the r-year return level is a common measure of extreme events. In this paper, we present a spatial analysis of precipitation return level using hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitations and daily precipitation above a high threshold at 62 stations in Korea with generalized extreme value(GEV) and generalized Pareto distribution(GPD), respectively. The spatial dependence among return levels is incorporated to the model through a latent Gaussian process of the GEV and GPD model parameters. We apply the proposed model to precipitation data collected at 62 stations in Korea from 1973 to 2011.

Analysis and Optimization of Cooperative Spectrum Sensing with Noisy Decision Transmission

  • Liu, Quan;Gao, Jun;Guo, Yunwei;Liu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.649-664
    • /
    • 2011
  • Cooperative spectrum sensing (CSS) with decision fusion is considered as a key technology for tackling the challenges caused by fading/shadowing effects and noise uncertainty in spectrum sensing in cognitive radio. However, most existing solutions assume an error-free decision transmission, which is obviously not the case in realistic scenarios. This paper extends the general decision-fusion-based CSS scheme by considering the fading/shadowing effects and noise corruption in the common control channels. With this more practical model, the fusion centre first estimates the local decisions using a binary minimum error probability detector, and then combines them to get the final result. Theoretical analysis and simulation of this CSS scheme are performed over typical channels, which suggest some performance deterioration compared with the pure case that assumes an error-free decision transmission. Furthermore, the fusion strategy optimization in the proposed cooperation model is also investigated using the Bayesian criteria. The numerical results show that the total error rate of noisy CSS is higher than that of the pure case, and the optimal values of fusion parameter in the counting rule under both cases decrease as the local detection threshold increases.

Comparison of Waist-to-height Ratio (WHtR), Body Mass Index (BMI) and Waist Circumference (WC) as a Screening Tool for Prediction of Metabolic-related Diseases

  • Oh, Hyun Sook
    • Journal of Integrative Natural Science
    • /
    • v.8 no.4
    • /
    • pp.305-312
    • /
    • 2015
  • The present study showed WHtR to be significantly better than BMI and WC for prediction of metabolic-related diseases in the middle-aged and older people in Korea, based on Bayesian ordered probit model analysis. The variations of WC, BMI and WHtR were compared according to the number of metabolic-related diseases such as hypertension, dyslipidemia, stroke, myocardial infarction, angina pectoris and diabetes. It was found that the three measures showed the similar variation except a very few extreme cases for age less than 40. For subjects over the age of 40, WC was not significant and WHtR gave more influence in greater variability than BMI on the number of metabolic diseases. Also, the rate of change for WHtR was higher than for BMI as the number of metabolic-related diseases increased. Specifically, the difference of the marginal effect of WHtR between no disease and only one disease was 1.81 times higher than that of BMI. Moreover, it was pointed out that the threshold value of WHtR for obesity should be considered differently by age.