• Title/Summary/Keyword: Bayesian posterior

Search Result 345, Processing Time 0.073 seconds

Regionalization of rainfall-runoff model parameters based on the correlation of regional characteristic factors (지역특성인자의 상호연관성을 고려한 강우-유출모형 매개변수 지역화)

  • Kim, Jin-Guk;Sumyia, Uranchimeg;Kim, Tae-Jeong;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.955-968
    • /
    • 2021
  • A water resource plan is routinely based on a natural flow and can be estimated using observed streamflow data or a long-term continuous rainfall-runoff model. However, the watershed with the natural flow is very limited to the upstream area of the dam. In particular, for the ungauged watershed, a rainfall-runoff model is established for the gauged watershed, and the model is then applied to the ungauged watershed by transferring the associated parameters. In this study, the GR4J rainfall-runoff model is mainly used to regionalize the parameters that are estimated from the 14 dam watershed via an optimization process. In terms of optimizing the parameters, the Bayesian approach was applied to consider the uncertainty of parameters quantitatively, and a number of parameter samples obtained from the posterior distribution were used for the regionalization. Here, the relationship between the estimated parameters and the topographical factors was first identified, and the dependencies between them are effectively modeled by a Copula function approach to obtain the regionalized parameters. The predicted streamflow with the use of regionalized parameters showed a good agreement with that of the observed with a correlation of about 0.8. It was found that the proposed regionalized framework is able to effectively simulate streamflow for the ungauged watersheds by the use of the regionalized parameters, along with the associated uncertainty, informed by the basin characteristics.

Comparison of Disaster Vulnerability Analysis and Risk Evaluation of Heat Wave Disasters (폭염재해의 재해취약성분석 및 리스크 평가 비교)

  • Yu-Jeong SEOL;Ho-Yong KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.1
    • /
    • pp.132-144
    • /
    • 2023
  • Recently, the frequency and intensity of heat waves due to the increase in climate change temperature are increasing. Therefore, this study tried to compare the evaluation process and evaluation results of the heat wave disaster evaluation, which is the government's analysis of the heat wave disaster vulnerability and the risk evaluation method recently emphasized by the IPCC. The analysis of climate change disaster vulnerability is evaluated based on manuals and guidelines prepared by the government. Risk evaluation can be evaluated as the product of the possibility of a disaster and its impact, and it is evaluated using the Markov chain Monte Carlo simulation based on Bayesian estimation method, which uses prior information to infer posterior probability. As a result of the analysis, the two evaluation results for Busan Metropolitan City differed slightly in the spatial distribution of areas vulnerable to heat waves. In order to properly evaluate disaster vulnerable areas due to climate change, the process and results of climate change disaster vulnerability analysis and risk assessment must be reviewed, and consider each methodology and countermeasures must be prepared.

Intercomparison of Change Point Analysis Methods for Identification of Inhomogeneity in Rainfall Series and Applications (강우자료의 비동질성 규명을 위한 변동점 분석기법의 상호비교 및 적용)

  • Lee, Sangho;Kim, Sang Ug;Lee, Yeong Seob;Sung, Jang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.8
    • /
    • pp.671-684
    • /
    • 2014
  • Change point analysis is a efficient tool to understand the fundamental information in hydro-meteorological data such as rainfall, discharge, temperature etc. Especially, this fundamental information to change points to future rainfall data identified by reasonable detection skills can affect the prediction of flood and drought occurrence because well detected change points provide a key to resolve the non-stationary or inhomogeneous problem by climate change. Therefore, in this study, the comparative study to assess the performance of the 3 change point detection skills, cumulative sum (CUSUM) method, Bayesian change point (BCP) method, and segmentation by dynamic programming (DP) was performed. After assessment of the performance of the proposed detection skills using the 3 types of the synthetic series, the 2 reasonable detection skills were applied to the observed and future rainfall data at the 5 rainfall gauges in South Korea. Finally, it was suggested that BCP (with 0.9 posterior probability) could be best detection skill and DP could be reasonably recommended through the comparative study. Also it was suggested that BCP (with 0.9 posterior probability) and DP detection skills to find some change points could be reasonable at the North-eastern part in South Korea. In future, the results in this study can be efficiently used to resolve the non-stationary problems in hydrological modeling considering inhomogeneity or nonstationarity.

Multi-focus Image Fusion Technique Based on Parzen-windows Estimates (Parzen 윈도우 추정에 기반한 다중 초점 이미지 융합 기법)

  • Atole, Ronnel R.;Park, Daechul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.75-88
    • /
    • 2008
  • This paper presents a spatial-level nonparametric multi-focus image fusion technique based on kernel estimates of input image blocks' underlying class-conditional probability density functions. Image fusion is approached as a classification task whose posterior class probabilities, P($wi{\mid}Bikl$), are calculated with likelihood density functions that are estimated from the training patterns. For each of the C input images Ii, the proposed method defines i classes wi and forms the fused image Z(k,l) from a decision map represented by a set of $P{\times}Q$ blocks Bikl whose features maximize the discriminant function based on the Bayesian decision principle. Performance of the proposed technique is evaluated in terms of RMSE and Mutual Information (MI) as the output quality measures. The width of the kernel functions, ${\sigma}$, were made to vary, and different kernels and block sizes were applied in performance evaluation. The proposed scheme is tested with C=2 and C=3 input images and results exhibited good performance.

  • PDF

Molecular Detection of Spirometra decipiens in the United States

  • Jeon, Hyeong-Kyu;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Sohn, Woon-Mok;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.4
    • /
    • pp.503-507
    • /
    • 2016
  • The genus Spirometra belongs to the family Diphyllobothriidae and order Pseudophyllidea, and includes intestinal parasites of cats and dogs. In this study, a plerocercoid labeled as Spirometra mansonoides from the USA was examined for species identification and phylogenetic analysis using 2 complete mitochondrial genes, cytochrome c oxidase I (cox1) and NADH dehydrogenase subunit 3 (nad3). The cox1 sequences (1,566 bp) of the plerocercoid specimen (USA) showed 99.2% similarity to the reference sequences of the plerocercoid of Korean Spirometra decipiens (GenBank no. KJ599679), and 99.1% similarity in regard to nad3 (346 bp). Phylogenetic tree topologies generated using 4 analytical methods were identical and showed high confidence levels with bootstrap values of 1.00, 100%, 100%, and 100% for Bayesian inference (BI), maximum-likelihood (ML), neighbor-joining (NJ), and maximum parsimony (MP) methods, respectively. Representatives of Diphyllobothrium and Spirometra species formed a monophyletic group, and the sister-genera status between these species was well supported. Trapezoic proglottids in the posterior 1/5 region of an adult worm obtained from an experimentally infected cat were morphologically examined. The outer uterine loop of the uterus coiling characteristically consisted of 2 complete turns. The results clearly indicated that the examined Spirometra specimen from the USA matched to S. decipiens very well, and indicated possible presence of the life cycle of this species in this region.

Estimation of genetic parameters and trends for production traits of dairy cattle in Thailand using a multiple-trait multiple-lactation test day model

  • Buaban, Sayan;Puangdee, Somsook;Duangjinda, Monchai;Boonkum, Wuttigrai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1387-1399
    • /
    • 2020
  • Objective: The objective of this study was to estimate the genetic parameters and trends for milk, fat, and protein yields in the first three lactations of Thai dairy cattle using a 3-trait,-3-lactation random regression test-day model. Methods: Data included 168,996, 63,388, and 27,145 test-day records from the first, second, and third lactations, respectively. Records were from 19,068 cows calving from 1993 to 2013 in 124 herds. (Co) variance components were estimated by Bayesian methods. Gibbs sampling was used to obtain posterior distributions. The model included herd-year-month of testing, breed group-season of calving-month in tested milk group, linear and quadratic age at calving as fixed effects, and random regression coefficients for additive genetic and permanent environmental effects, which were defined as modified constant, linear, quadratic, cubic and quartic Legendre coefficients. Results: Average daily heritabilities ranged from 0.36 to 0.48 for milk, 0.33 to 0.44 for fat and 0.37 to 0.48 for protein yields; they were higher in the third lactation for all traits. Heritabilities of test-day milk and protein yields for selected days in milk were higher in the middle than at the beginning or end of lactation, whereas those for test-day fat yields were high at the beginning and end of lactation. Genetics correlations (305-d yield) among production yields within lactations (0.44 to 0.69) were higher than those across lactations (0.36 to 0.68). The largest genetic correlation was observed between the first and second lactation. The genetic trends of 305-d milk, fat and protein yields were 230 to 250, 25 to 29, and 30 to 35 kg per year, respectively. Conclusion: A random regression model seems to be a flexible and reliable procedure for the genetic evaluation of production yields. It can be used to perform breeding value estimation for national genetic evaluation in the Thai dairy cattle population.

A Real-time Particle Filtering Framework for Robust Camera Tracking in An AR Environment (증강현실 환경에서의 강건한 카메라 추적을 위한 실시간 입자 필터링 기법)

  • Lee, Seok-Han
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.597-606
    • /
    • 2010
  • This paper describes a real-time camera tracking framework specifically designed to track a monocular camera in an AR workspace. Typically, the Kalman filter is often employed for the camera tracking. In general, however, tracking performances of conventional methods are seriously affected by unpredictable situations such as ambiguity in feature detection, occlusion of features and rapid camera shake. In this paper, a recursive Bayesian sampling framework which is also known as the particle filter is adopted for the camera pose estimation. In our system, the camera state is estimated on the basis of the Gaussian distribution without employing additional uncertainty model and sample weight computation. In addition, the camera state is directly computed based on new sample particles which are distributed according to the true posterior of system state. In order to verify the proposed system, we conduct several experiments for unstable situations in the desktop AR environments.

Bayesian analysis of finite mixture model with cluster-specific random effects (군집 특정 변량효과를 포함한 유한 혼합 모형의 베이지안 분석)

  • Lee, Hyejin;Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.57-68
    • /
    • 2017
  • Clustering algorithms attempt to find a partition of a finite set of objects in to a potentially predetermined number of nonempty subsets. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet prior distribution calculates posterior probabilities when the number of clusters was known. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. Examples are given to show how these models perform on real data.

Feasibility Mapping of Groundwater Yield Characteristics using Weight of Evidence Technique based on GIS in the Pocheon Area (GIS 기반 Weight of Evidence 기법을 이용한 포천 지역의 지하수 산출특성 예측도 작성)

  • Heo Seon-Hee;Lee Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.493-503
    • /
    • 2005
  • In this study, the weight of evidence(WofE) technique based on GIS was applied to spatially estimate the groundwater yield characteristics at the Pocheon area In Gyunggi-do. The groundwater preservation depends on many hydro-geologic factors that include hydrologic data, land-use data, topographic data, geological map and other natural materials collected at the site, even with man-made things. All these data can be digitally processed and managed by GIS database. In the applied technique of WofE, the prior probabilities were estimated as the factors that affect the yield on lineament, geology, drainage pattern or river system density, landuse and soil. We calculated the value of the weight values, W+ and W-, of each factor and estimated the contrast value of it. Results by the groundwater yield characteristic computation using this scheme were presented feasibility map in the form of the posterior probability to the consideration of in-situ samples. It is concluded that this technique is regarded as one of the effective techniques for the feasibility mapping related to the estimation of groundwater-bearing potential zones and its spatial pattern.

Variable selection for latent class analysis using clustering efficiency (잠재변수 모형에서의 군집효율을 이용한 변수선택)

  • Kim, Seongkyung;Seo, Byungtae
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.721-732
    • /
    • 2018
  • Latent class analysis (LCA) is an important tool to explore unseen latent groups in multivariate categorical data. In practice, it is important to select a suitable set of variables because the inclusion of too many variables in the model makes the model complicated and reduces the accuracy of the parameter estimates. Dean and Raftery (Annals of the Institute of Statistical Mathematics, 62, 11-35, 2010) proposed a headlong search algorithm based on Bayesian information criteria values to choose meaningful variables for LCA. In this paper, we propose a new variable selection procedure for LCA by utilizing posterior probabilities obtained from each fitted model. We propose a new statistic to measure the adequacy of LCA and develop a variable selection procedure. The effectiveness of the proposed method is also presented through some numerical studies.