• Title/Summary/Keyword: Bayesian network learning

Search Result 132, Processing Time 0.026 seconds

Causal Inference Network of Genes Related with Bone Metastasis of Breast Cancer and Osteoblasts Using Causal Bayesian Networks

  • Park, Sung Bae;Chung, Chun Kee;Gonzalez, Efrain;Yoo, Changwon
    • Journal of Bone Metabolism
    • /
    • v.25 no.4
    • /
    • pp.251-266
    • /
    • 2018
  • Background: The causal networks among genes that are commonly expressed in osteoblasts and during bone metastasis (BM) of breast cancer (BC) are not well understood. Here, we developed a machine learning method to obtain a plausible causal network of genes that are commonly expressed during BM and in osteoblasts in BC. Methods: We selected BC genes that are commonly expressed during BM and in osteoblasts from the Gene Expression Omnibus database. Bayesian Network Inference with Java Objects (Banjo) was used to obtain the Bayesian network. Genes registered as BC related genes were included as candidate genes in the implementation of Banjo. Next, we obtained the Bayesian structure and assessed the prediction rate for BM, conditional independence among nodes, and causality among nodes. Furthermore, we reported the maximum relative risks (RRs) of combined gene expression of the genes in the model. Results: We mechanistically identified 33 significantly related and plausibly involved genes in the development of BC BM. Further model evaluations showed that 16 genes were enough for a model to be statistically significant in terms of maximum likelihood of the causal Bayesian networks (CBNs) and for correct prediction of BM of BC. Maximum RRs of combined gene expression patterns showed that the expression levels of UBIAD1, HEBP1, BTNL8, TSPO, PSAT1, and ZFP36L2 significantly affected development of BM from BC. Conclusions: The CBN structure can be used as a reasonable inference network for accurately predicting BM in BC.

Learning and Propagation Framework of Bayesian Network using Meta-Heuristics and EM algorithm considering Dynamic Environments (EM 알고리즘 및 메타휴리스틱을 통한 다이나믹 환경에서의 베이지안 네트워크 학습 전파 프레임웍)

  • Choo, Sanghyun;Lee, Hyunsoo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.335-342
    • /
    • 2016
  • When dynamics changes occurred in an existing Bayesian Network (BN), the related parameters embedding on the BN have to be updated to new parameters adapting to changed patterns. In this case, these parameters have to be updated with the consideration of the causalities in the BN. This research suggests a framework for updating parameters dynamically using Expectation Maximization (EM) algorithm and Harmony Search (HS) algorithm among several Meta-Heuristics techniques. While EM is an effective algorithm for estimating hidden parameters, it has a limitation that the generated solution converges a local optimum in usual. In order to overcome the limitation, this paper applies HS for tracking the global optimum values of Maximum Likelihood Estimators (MLE) of parameters. The proposed method suggests a learning and propagation framework of BN with dynamic changes for overcoming disadvantages of EM algorithm and converging a global optimum value of MLE of parameters.

A Study of Threat Evaluation using Learning Bayesian Network on Air Defense (베이지안 네트워크 학습을 이용한 방공 무기 체계에서의 위협평가 기법연구)

  • Choi, Bomin;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.715-721
    • /
    • 2012
  • A threat evaluation is the technique which decides order of priority about tracks engaging with enemy by recognizing battlefield situation and making it efficient decision making. That is, in battle situation of multiple target it makes expeditious decision making and then aims at minimizing asset's damage and maximizing attack to targets. Threat value computation used in threat evaluation is calculated by sensor data which generated in battle space. Because Battle situation is unpredictable and there are various possibilities generating potential events, the damage or loss of data can make confuse decision making. Therefore, in this paper we suggest that substantial threat value calculation using learning bayesian network which makes it adapt to the varying battle situation to gain reliable results under given incomplete data and then verify this system's performance.

Learning Predictive Models of Memory Landmarks based on Attributed Bayesian Networks Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 속성별 베이지안 네트워크 기반의 랜드마크 예측 모델 학습)

  • Lee, Byung-Gil;Lim, Sung-Soo;Cho, Sung-Bae
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.4
    • /
    • pp.535-554
    • /
    • 2009
  • Information collected on mobile devices might be utilized to support user's memory, but it is difficult to effectively retrieve them because of the enormous amount of information. In order to organize information as an episodic approach that mimics human memory for the effective search, it is required to detect important event like landmarks. For providing new services with users, in this paper, we propose the prediction model to find landmarks automatically from various context log information based on attributed Bayesian networks. The data are divided into daily and weekly ones, and are categorized into attributes according to the source, to learn the Bayesian networks for the improvement of landmark prediction. The experiments on the Nokia log data showed that the Bayesian method outperforms SVMs, and the proposed attributed Bayesian networks are superior to the Bayesian networks modelled daily and weekly.

  • PDF

Comparison of Efficient Scoring Metrics for Bayesian Network Learning in Biological Domain (생물학적 데이터의 베이지안 네트워크 학습에서의 효과적인 스코어링 척도 비교)

  • Hwang Sung-Chul;Lee Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.357-360
    • /
    • 2006
  • 본 논문에서는 베이지안 네트워크 학습 방법을 이용한 비교적 적은 양의 샘플 데이터에서 현실적인 네트워크 모델 추론을 위한 효율적인 스코어링 척도를 찾는 것을 목표로 하였다. UPSM, CUPSM, DPSM, BDe(Bayesian Dirichlet) 등을 각각 적용시켜본 결과를 통해 어떤 방법이 가장 적은 샘플의 데이터, 특히 생물학적 데이터에적합한지 알아보았다.

  • PDF

Towards Effective Analysis and Tracking of Mozilla and Eclipse Defects using Machine Learning Models based on Bugs Data

  • Hassan, Zohaib;Iqbal, Naeem;Zaman, Abnash
    • Soft Computing and Machine Intelligence
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Analysis and Tracking of bug reports is a challenging field in software repositories mining. It is one of the fundamental ways to explores a large amount of data acquired from defect tracking systems to discover patterns and valuable knowledge about the process of bug triaging. Furthermore, bug data is publically accessible and available of the following systems, such as Bugzilla and JIRA. Moreover, with robust machine learning (ML) techniques, it is quite possible to process and analyze a massive amount of data for extracting underlying patterns, knowledge, and insights. Therefore, it is an interesting area to propose innovative and robust solutions to analyze and track bug reports originating from different open source projects, including Mozilla and Eclipse. This research study presents an ML-based classification model to analyze and track bug defects for enhancing software engineering management (SEM) processes. In this work, Artificial Neural Network (ANN) and Naive Bayesian (NB) classifiers are implemented using open-source bug datasets, such as Mozilla and Eclipse. Furthermore, different evaluation measures are employed to analyze and evaluate the experimental results. Moreover, a comparative analysis is given to compare the experimental results of ANN with NB. The experimental results indicate that the ANN achieved high accuracy compared to the NB. The proposed research study will enhance SEM processes and contribute to the body of knowledge of the data mining field.

Using machine learning to forecast and assess the uncertainty in the response of a typical PWR undergoing a steam generator tube rupture accident

  • Tran Canh Hai Nguyen ;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3423-3440
    • /
    • 2023
  • In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.

New Cellular Neural Networks Template for Image Halftoning based on Bayesian Rough Sets

  • Elsayed Radwan;Basem Y. Alkazemi;Ahmed I. Sharaf
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.85-94
    • /
    • 2023
  • Image halftoning is a technique for varying grayscale images into two-tone binary images. Unfortunately, the static representation of an image-half toning, wherever each pixel intensity is combined by its local neighbors only, causes missing subjective problem. Also, the existing noise causes an instability criterion. In this paper an image half-toning is represented as a dynamical system for recognizing the global representation. Also, noise is reduced based on a probabilistic model. Since image half-toning is considered as 2-D matrix with a full connected pass, this structure is recognized by the dynamical system of Cellular Neural Networks (CNNs) which is defined by its template. Bayesian Rough Sets is used in exploiting the ideal CNNs construction that synthesis its dynamic. Also, Bayesian rough sets contribute to enhance the quality of the halftone image by removing noise and discovering the effective parameters in the CNNs template. The novelty of this method lies in finding a probabilistic based technique to discover the term of CNNs template and define new learning rules for CNNs internal work. A numerical experiment is conducted on image half-toning corrupted by Gaussian noise.

Spammer Detection using Features based on User Relationships in Twitter (관계 기반 특징을 이용한 트위터 스패머 탐지)

  • Lee, Chansik;Kim, Juntae
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.785-791
    • /
    • 2014
  • Twitter is one of the most famous SNS(Social Network Service) in the world. Twitter spammer accounts that are created easily by E-mail authentication deliver harmful content to twitter users. This paper presents a spammer detection method that utilizes features based on the relationship between users in twitter. Relationship-based features include friends relationship that represents user preferences and type relationship that represents similarity between users. We compared the performance of the proposed method and conventional spammer detection method on a dataset with 3% to 30% spammer ratio, and the experimental results show that proposed method outperformed conventional method in Naive Bayesian Classification and Decision Tree Learning.

DISEASE FORECAST USING MACHINE LEARNING ALGORITHMS

  • HUSSAIN, MOHAMMED MUZAFFAR;DEVI, S. KALPANA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1151-1165
    • /
    • 2022
  • Key drive of information quarrying is to digest liked information starting possible information. With the colossal amount of realities kept in documents, information bases, and stores, in the medical care area, it's inexorably significant, assuming excessive, arising compelling resources aimed at examination besides comprehension like information on behalf of the withdrawal of gen that might assistance in independent direction. Classification is method in information mining; it's characterized as per private, passing on item toward a specific course established happening it is likeness toward past instances of different substances trendy the data collection. In pre-owned recycled four Classification algorithm that incorporate Multi-Layer perception, KSTAR, Bayesian Network and PART to fabricate the grouping replicas arranged the malaria data collection and analyze the replicas, degree their exhibition through Waikato Environment for Knowledge Analysis introduced to Java Development Kit 8, then utilizations outfit's technique trendy promoting presentation of the arrangement methodology. The outcome perceived that Bayesian Network return most elevated exactness of 50.05% when working on followed by Multi-Layer perception, with 49.9% when helping is half, then, at that point, Kstar with precision of 49.44%, 49.5% when supporting individually and PART have lesser precision of 48.1% when helping, The exploration recommended that Bayesian Network is awesome toward remain utilized on Malaria data collection in our sanatoriums.