• Title/Summary/Keyword: Bayesian network learning

Search Result 132, Processing Time 0.023 seconds

A Target Position Reasoning System for Disaster Response Robot based on Bayesian Network (베이지안 네트워크 기반 재난 대응 로봇의 탐색 목표 추론 시스템)

  • Yang, Kyon-Mo;Seo, Kap-Ho;Lee, Jongil;Lee, Seokjae;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • In this paper, we introduce a target position reasoning system based on Bayesian network that selects destinations of robots on a map to explore compound disaster environments. Compound disaster accidents have hazardous conditions because of a low visibility and a high temperature. Before firefighters enter the environment, the robots notify information in advance, such as victim's positions, number of victims, and status of debris of building. The problem of the previous system is that the system requires a target position to operate the robots and the firefighter need to learn how to use the robot. However, selecting the target position is not easy because of the information gap between eyewitness accounts and map coordinates. In addition, learning the technique how to use the robots needs a lot of time and money. The proposed system infers the target area using Bayesian network and selects proper x, y coordinates on the map based on image processing methods of the map. To verify the proposed system, we designed three example scenarios based on eyewetinees testimonies and compared time consumption between human and the system. In addition, we evaluate the system usability by 40 subjects.

Machine Learning Model of Gyro Sensor Data for Drone Flight Control (드론 비행 조종을 위한 자이로센서 데이터 기계학습 모델)

  • Ha, Hyunsoo;Hwang, Byung-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.927-934
    • /
    • 2017
  • As the technology of drone develops, the use of drone is increasing, In addition, the types of sensors that are inside of smart phones are becoming various and the accuracy is enhancing day by day. Various of researches are being progressed. Therefore, we need to control drone by using smart phone's sensors. In this paper, we propose the most suitable machine learning model that matches the gyro sensor data with drone's moving. First, we classified drone by it's moving of the gyro sensor value of 4 and 8 degree of freedom. After that, we made it to study machine learning. For the method of machine learning, we applied the One-Rule, Neural Network, Decision Tree, and Navie Bayesian. According to the result of experiment that we designated the value from gyro sensor as the attribute, we had the 97.3 percent of highest accuracy that came out from Naive Bayesian method using 2 attributes in 4 degree of freedom. On and the same, in 8 degree of freedom, Naive Bayesian method using 2 attributes showed the highest accuracy of 93.1 percent.

Pattern Recognition Methods for Emotion Recognition with speech signal

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.150-154
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition are determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section.

A Constrained Learning Method based on Ontology of Bayesian Networks for Effective Recognition of Uncertain Scenes (불확실한 장면의 효과적인 인식을 위한 베이지안 네트워크의 온톨로지 기반 제한 학습방법)

  • Hwang, Keum-Sung;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.549-561
    • /
    • 2007
  • Vision-based scene understanding is to infer and interpret the context of a scene based on the evidences by analyzing the images. A probabilistic approach using Bayesian networks is actively researched, which is favorable for modeling and inferencing cause-and-effects. However, it is difficult to gather meaningful evidences sufficiently and design the model by human because the real situations are dynamic and uncertain. In this paper, we propose a learning method of Bayesian network that reduces the computational complexity and enhances the accuracy by searching an efficient BN structure in spite of insufficient evidences and training data. This method represents the domain knowledge as ontology and builds an efficient hierarchical BN structure under constraint rules that come from the ontology. To evaluate the proposed method, we have collected 90 images in nine types of circumstances. The result of experiments indicates that the proposed method shows good performance in the uncertain environment in spite of few evidences and it takes less time to learn.

Online Learning Control for Network-induced Time Delay Systems using Reset Control and Probabilistic Prediction Method (네트워크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습제어시스템)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeul;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.929-938
    • /
    • 2009
  • This paper presents a novel control methodology for communication network based nonlinear systems with time delay nature. We construct a nominal nonlinear control law for representing a linear model and a reset control system which is aimed for corrective control strategy to compensate system error due to uncertain time delay through wireless communication network. Next, online neural control approach is proposed for overcoming nonstationary statistical nature in the network topology. Additionally, DBN (Dynamic Bayesian Network) technique is accomplished for modeling of its dynamics in terms of casuality, which is then utilized for estimating prediction of system output. We evaluate superiority and reliability of the proposed control approach through numerical simulation example in which a nonlinear inverted pendulum model is employed as a networked control system.

A Study on the Application of ANN for Surface Roughness Prediction in Side Milling AL6061-T4 by Endmill (AL6061-T4의 측면 엔드밀 가공에서 표면거칠기 예측을 위한 인공신경망 적용에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.55-60
    • /
    • 2021
  • We applied an artificial neural network (ANN) and evaluated surface roughness prediction in lateral milling using an endmill. The selected workpiece was AL6061-T4 to obtain data of surface roughness measurement based on the spindle speed, feed, and depth of cut. The Bayesian optimization algorithm was applied to the number of nodes and the learning rate of each hidden layer to optimize the neural network. Experimental results show that the neural network applied to optimize using the Expected Improvement(EI) algorithm showed the best performance. Additionally, the predicted values do not exactly match during the neural network evaluation; however, the predicted tendency does march. Moreover, it is found that the neural network can be used to predict the surface roughness in the milling of aluminum alloy.

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

Time Reduction for Package Warpage Optimization based on Deep Neural Network and Bayesian Optimization (심층신경망 및 베이지안 최적화 기반 패키지 휨 최적화 시간 단축)

  • Jungeon Lee;Daeil Kwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.50-57
    • /
    • 2024
  • Recently, applying a machine learning to surrogate modeling for rapid optimization of complex designs have been widely researched. Once trained, the machine learning surrogate model can predict similar outputs to Finite Element Analysis (FEA) simulations but require significantly less computing resources. In addition, combined with optimization methodologies, it can identify optimal design variable with less time requirement compared to iterative simulation. This study proposes a Deep Neural Network (DNN) model with Bayesian Optimization (BO) approach for efficiently searching the optimal design variables to minimize the warpage of electronic package. The DNN model was trained by using design variable-warpage dataset from FEA simulation, and the Bayesian optimization was applied to find the optimal design variables which minimizing the warpage. The suggested DNN + BO model shows over 99% consistency compared to actual simulation results, while only require 15 second to identify optimal design variable, which reducing the optimization time by more than 57% compared to FEA simulation.

Air Threat Evaluation System using Fuzzy-Bayesian Network based on Information Fusion (정보 융합 기반 퍼지-베이지안 네트워크 공중 위협평가 방법)

  • Yun, Jongmin;Choi, Bomin;Han, Myung-Mook;Kim, Su-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.21-31
    • /
    • 2012
  • Threat Evaluation(TE) which has air intelligence attained by identifying friend or foe evaluates the target's threat degree, so it provides information to Weapon Assignment(WA) step. Most of TE data are passed by sensor measured values, but existing techniques(fuzzy, bayesian network, and so on) have many weaknesses that erroneous linkages and missing data may fall into confusion in decision making. Therefore we need to efficient Threat Evaluation system that can refine various sensor data's linkages and calculate reliable threat values under unpredictable war situations. In this paper, we suggest new threat evaluation system based on information fusion JDL model, and it is principle that combine fuzzy which is favorable to refine ambiguous relationships with bayesian network useful to inference battled situation having insufficient evidence and to use learning algorithm. Finally, the system's performance by getting threat evaluation on an air defense scenario is presented.

Development of Context Awareness and Service Reasoning Technique for Handicapped People (장애인을 위한 상황인식 및 서비스 추론기술 개발)

  • Ko, Kwang-Eun;Shin, Dong-Jun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.512-517
    • /
    • 2008
  • It is show that increasing of aged and handicapped people requires development of Ubiquitous computing technique to offer the specialized service for handicapped-people. For this, we need a development of Context Awareness and Service Reasoning Technique that the technique is supplied interaction between user and U-environment instead of the old unilateral relation. The old research of context awareness needed probabilistic presentation model like a Bayesian Network based on expert Systems for recognize given circumstance by a domain of uncertain real world. In this article, we define a domain of disorder activity assistant service application and context model based on ontology in diversified environment and minimized intervention of user and developer. By use this context model, we apply the structure learning of Bayesian Network and decide the service and activity to development of application service for handicapped people. Finally, we define the proper Conditional Probability Table of the structured Bayesian Network and if random situation is given to user, then present state variable of Activity and Service by given Causal relation of Bayesian Network based on Conditional Probability Table and it can be result of context awareness.