• Title/Summary/Keyword: Bayesian network learning

Search Result 132, Processing Time 0.023 seconds

On-line Bayesian Learning based on Wireless Sensor Network (무선 센서 네트워크에 기반한 온라인 베이지안 학습)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06d
    • /
    • pp.105-108
    • /
    • 2007
  • Bayesian learning network is employed for diverse applications. This paper discusses the Bayesian learning network algorithm structure which can be applied in the wireless sensor network environment for various online applications. First, this paper discusses Bayesian parameter learning, Bayesian DAG structure learning, characteristics of wireless sensor network, and data gathering in the wireless sensor network. Second, this paper discusses the important considerations about the online Bayesian learning network and the conceptual structure of the learning network algorithm.

  • PDF

A Study on the Bayesian Recurrent Neural Network for Time Series Prediction (시계열 자료의 예측을 위한 베이지안 순환 신경망에 관한 연구)

  • Hong Chan-Young;Park Jung-Hoon;Yoon Tae-Sung;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1295-1304
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network is proposed to predict time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one needs to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, the weights vector is set as a state vector of state space method, and its probability distributions are estimated in accordance with the particle filtering process. This approach makes it possible to obtain more exact estimation of the weights. In the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent neural network with Bayesian inference, what we call Bayesian recurrent neural network (BRNN), is expected to show higher performance than the normal neural network. To verify the proposed method, the time series data are numerically generated and various kinds of neural network predictor are applied on it in order to be compared. As a result, feedback structure and Bayesian learning are better than feedforward structure and backpropagation learning, respectively. Consequently, it is verified that the Bayesian reccurent neural network shows better a prediction result than the common Bayesian neural network.

A Matrix-Based Genetic Algorithm for Structure Learning of Bayesian Networks

  • Ko, Song;Kim, Dae-Won;Kang, Bo-Yeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.135-142
    • /
    • 2011
  • Unlike using the sequence-based representation for a chromosome in previous genetic algorithms for Bayesian structure learning, we proposed a matrix representation-based genetic algorithm. Since a good chromosome representation helps us to develop efficient genetic operators that maintain a functional link between parents and their offspring, we represent a chromosome as a matrix that is a general and intuitive data structure for a directed acyclic graph(DAG), Bayesian network structure. This matrix-based genetic algorithm enables us to develop genetic operators more efficient for structuring Bayesian network: a probability matrix and a transpose-based mutation operator to inherit a structure with the correct edge direction and enhance the diversity of the offspring. To show the outstanding performance of the proposed method, we analyzed the performance between two well-known genetic algorithms and the proposed method using two Bayesian network scoring measures.

Online Learning of Bayesian Network Parameters for Incomplete Data of Real World (현실 세계의 불완전한 데이타를 위한 베이지안 네트워크 파라메터의 온라인 학습)

  • Lim, Sung-Soo;Cho, Sung-Bae
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.12
    • /
    • pp.885-893
    • /
    • 2006
  • The Bayesian network(BN) has emerged in recent years as a powerful technique for handling uncertainty iii complex domains. Parameter learning of BN to find the most proper network from given data set has been investigated to decrease the time and effort for designing BN. Off-line learning needs much time and effort to gather the enough data and since there are uncertainties in real world, it is hard to get the complete data. In this paper, we propose an online learning method of Bayesian network parameters from incomplete data. It provides higher flexibility through learning from incomplete data and higher adaptability on environments through online learning. The results of comparison with Voting EM algorithm proposed by Cohen at el. confirm that the proposed method has the same performance in complete data set and higher performance in incomplete data set, comparing with Voting EM algorithm.

Bayesian Neural Network with Recurrent Architecture for Time Series Prediction

  • Hong, Chan-Young;Park, Jung-Hun;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.631-634
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network (BRNN) is proposed to predict time series data. Among the various traditional prediction methodologies, a neural network method is considered to be more effective in case of non-linear and non-stationary time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one need to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, we sets the weight vector as a state vector of state space method, and estimates its probability distributions in accordance with the Bayesian inference. This approach makes it possible to obtain more exact estimation of the weights. Moreover, in the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent network with Bayesian inference, what we call BRNN, is expected to show higher performance than the normal neural network. To verify the performance of the proposed method, the time series data are numerically generated and a neural network predictor is applied on it. As a result, BRNN is proved to show better prediction result than common feedforward Bayesian neural network.

  • PDF

Bayesian Learning for Self Organizing Maps (자기조직화 지도를 위한 베이지안 학습)

  • 전성해;전홍석;황진수
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.251-267
    • /
    • 2002
  • Self Organizing Maps(SOM) by Kohonen is very fast algorithm in neural networks. But it doesn't show sure rules of training results. In this paper, we introduce to Bayesian Learning for Self Organizing Maps(BLSOM) which combines self organizing maps with Bayesian learning. So it supports explanatory power of models and improves prediction. BLSOM has global optima anywhere but SOM has not. This is proved by experiment in this paper.

User Adaptive Restaurant Recommendation Service in Mobile Environment based on Bayesian Network Learning (베이지안 네트워크의 학습에 기반한 모바일 환경에서의 사용자 적응형 음식점 추천 서비스)

  • Kim, Hee-Taek;Cho, Sung-Bae
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.6-10
    • /
    • 2009
  • In these days, recommendation service in mobile environments is in the limelight due to the spread of mobile devices and an increase of information owing to advancement of computer network. The restaurant recommendation system reflecting user preference was proposed. This system uses Bayesian network to model user preference and analytical hierarchical process to recommend restaurants, but static inference model for user preference used in the system has some limitations that cannot manage changing user preference and enormous user survey must be preceded. This paper proposes a learning method for Bayesian network based on user requests. The proposed method is implemented on mobile devices and desktop, and we show the possibility of the proposed method through experiments.

  • PDF

Context-aware application for smart home based on Bayesian network (베이지안 네트워크에 기반한 스마트 홈에서의 상황인식 기법개발)

  • Chung, Woo-Yong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.179-184
    • /
    • 2007
  • This paper deals with a context-aware application based on Bayesian network in the smart home. Bayesian network is a powerful graphical tool for learning casual dependencies between various context events and obtaining probability distributions. So we can recognize the resident's activities and home environment based on it. However as the sensors become various, learning the structure become difficult. We construct Bayesian network simple and efficient way with mutual information and evaluated the method in the virtual smart home.

Search Space Analysis of R-CORE Method for Bayesian Network Structure Learning and Its Effectiveness on Structural Quality (R-CORE를 통한 베이지안 망 구조 학습의 탐색 공간 분석)

  • Jung, Sung-Won;Lee, Do-Heon;Lee, Kwang-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.572-578
    • /
    • 2008
  • We analyze the search space considered by the previously proposed R-CORE method for learning Bayesian network structures of large scale. Experimental analysis on the search space of the method is also shown. The R-CORE method reduces the search space considered for Bayesian network structures by recursively clustering the random variables and restricting the orders between clusters. We show the R-CORE method has a similar search space with the previous method in the worst case but has a much less search space in the average case. By considering much less search space in the average case, the R-CORE method shows less tendency of overfitting in learning Bayesian network structures compared to the previous method.

The performance of Bayesian network classifiers for predicting discrete data (이산형 자료 예측을 위한 베이지안 네트워크 분류분석기의 성능 비교)

  • Park, Hyeonjae;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.309-320
    • /
    • 2020
  • Bayesian networks, also known as directed acyclic graphs (DAG), are used in many areas of medicine, meteorology, and genetics because relationships between variables can be modeled with graphs and probabilities. In particular, Bayesian network classifiers, which are used to predict discrete data, have recently become a new method of data mining. Bayesian networks can be grouped into different models that depend on structured learning methods. In this study, Bayesian network models are learned with various properties of structure learning. The models are compared to the simplest method, the naïve Bayes model. Classification results are compared by applying learned models to various real data. This study also compares the relationships between variables in the data through graphs that appear in each model.