• Title/Summary/Keyword: Bayesian fusion

Search Result 48, Processing Time 0.023 seconds

A development of travel time estimation algorithm fusing GPS probe and loop detector (GPS probe 및 루프 검지기 자료의 융합을 통한 통행시간추정 알고리즘 개발)

  • 정연식;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.3
    • /
    • pp.97-116
    • /
    • 1999
  • The growing demand for the real time traffic information is bringing about the category and number of traffic collection mechanism in the era of ITS. There are, however, two problems in making data into information using various traffic data. First, the information making process of making data into the representative information, for each traffic collection mechanism, for the specified analysis periods is required. Second, the integration process of fusing each representative information into "the information" for each link out of each source is also required. That is, both data reduction and/or data to information process and information fusion are required. This article is focusing on the development of information fusing algorithm based on voting technique, fuzzy regression, and, Bayesian pooling technique for estimating the dynamic link travel time of networks. The proposed algorithm has been validated using the field experiment data out of GPS probes and detectors over the roadways and the estimated link travel time from the algorithm is proved to be more useful than the mere arithmetic mean from each traffic source.

  • PDF

Effect of Prior Probabilities on the Classification Accuracy under the Condition of Poor Separability

  • Kim, Chang-Jae;Eo, Yang-Dam;Lee, Byoung-Kil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.333-340
    • /
    • 2008
  • This paper shows that the use of prior probabilities of the involved classes improve the accuracy of classification in case of poor separability between classes. Three cases of experiments are designed with two LiDAR datasets while considering three different classes (building, tree, and flat grass area). Moreover, random sampling method with human interpretation is used to achieve the approximate prior probabilities in this research. Based on the experimental results, Bayesian classification with the appropriate prior probability makes the improved classification results comparing with the case of non-prior probability when the ratio of prior probability of one class to that of the other is significantly different to 1.0.

Fuzzy Bayesian Network for Fusion of Multimodal Context Information (다양한 형태의 상황 정보 합성을 위한 퍼지 베이지안 네트워크)

  • Yoo Ji-Oh;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.631-633
    • /
    • 2005
  • 다양한 형태의 상황 정보를 결합하여 추론하기 위해 베이지안 네트워크를 많이 사용한다. 그러나 일반 베이지안 네트워크는 각 노드의 상태가 이산적이기 때문에, 연속적이거나 여러 상태가 동시에 존재할 수 있는 현실의 상황 정보를 처리하기 어렵다. 본 논문에서는 이와 같은 베이지안 네트워크의 단점을 보완하기 위해 다양한 형태의 상황 정보를 퍼지를 통해 전처리하여 베이지안 네트워크를 통해 추론하는 퍼지 베이지안 네트워크를 제안한다. 유용성을 보이기 위해 음악 추천 에이전트를 설계하여 일반 베이지안 네트워크와 비교 실험한 결과, 제안한 방법으로 다양한 상황 정보에 대해 유연한 처리가 가능함을 확인하였다.

  • PDF

Classification of Welding Defects in Austenitic Stainless Steel by Neural Pattern Recognition of Ultrasonic Signal (초음파신호의 신경망 형상인식법을 이용한 오스테나이트 스테인레스강의 용접부결함 분류에 관한 연구)

  • Lee, Gang-Yong;Kim, Jun-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1309-1319
    • /
    • 1996
  • The research for the classification of the natural defects in welding zone is performd using the neuro-pattern recognition technology. The signal pattern recognition package including the user's defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection, The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian calssifier are compared and discussed. The neuro-pattern recognition technique is applied to the classificaiton of such natural defects as root crack, incomplete penetration, lack of fusion, slag inclusion, porosity, etc. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the natural welding defects.

Development of Context Awareness and Service Reasoning Technique for Handicapped People (멀티 모달 감정인식 시스템 기반 상황인식 서비스 추론 기술 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.34-39
    • /
    • 2009
  • As a subjective recognition effect, human's emotion has impulsive characteristic and it expresses intentions and needs unconsciously. These are pregnant with information of the context about the ubiquitous computing environment or intelligent robot systems users. Such indicators which can aware the user's emotion are facial image, voice signal, biological signal spectrum and so on. In this paper, we generate the each result of facial and voice emotion recognition by using facial image and voice for the increasing convenience and efficiency of the emotion recognition. Also, we extract the feature which is the best fit information based on image and sound to upgrade emotion recognition rate and implement Multi-Modal Emotion recognition system based on feature fusion. Eventually, we propose the possibility of the ubiquitous computing service reasoning method based on Bayesian Network and ubiquitous context scenario in the ubiquitous computing environment by using result of emotion recognition.

Performance Evaluation of Multimodal Biometric System for Normalization Methods and Classifiers (균등화 및 분류기에 따른 다중 생체 인식 시스템의 성능 평가)

  • Go, Hyoun-Ju;Woo, Na-Young;Shin, Yong-Nyuo;Kim, Jae-Sung;Kim, Hak-Il;Chun, Myung-Geun
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.4
    • /
    • pp.377-388
    • /
    • 2007
  • In this paper, we propose a multi-modal biometric system based on face, iris and fingerprint recognition system. To effectively aggregate two systems, we use statistical distribution models based on matching values for genuine and impostor, respectively. And then, We performed reveal fusion algorithms including weighted summation, Support Vector Machine(SVM), Fisher discriminant analysis, Bayesian classifier. From the various experiments, we found that the performance of multi-modal biometric system was influenced with the normalization methods and classifiers.

A Study on Emotion Recognition Systems based on the Probabilistic Relational Model Between Facial Expressions and Physiological Responses (생리적 내재반응 및 얼굴표정 간 확률 관계 모델 기반의 감정인식 시스템에 관한 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.513-519
    • /
    • 2013
  • The current vision-based approaches for emotion recognition, such as facial expression analysis, have many technical limitations in real circumstances, and are not suitable for applications that use them solely in practical environments. In this paper, we propose an approach for emotion recognition by combining extrinsic representations and intrinsic activities among the natural responses of humans which are given specific imuli for inducing emotional states. The intrinsic activities can be used to compensate the uncertainty of extrinsic representations of emotional states. This combination is done by using PRMs (Probabilistic Relational Models) which are extent version of bayesian networks and are learned by greedy-search algorithms and expectation-maximization algorithms. Previous research of facial expression-related extrinsic emotion features and physiological signal-based intrinsic emotion features are combined into the attributes of the PRMs in the emotion recognition domain. The maximum likelihood estimation with the given dependency structure and estimated parameter set is used to classify the label of the target emotional states.

Three-dimensional Machine Vision System based on moire Interferometry for the Ball Shape Inspection of Micro BGA Packages (마이크로 BGA 패키지의 볼 형상 시각검사를 위한 모아레 간섭계 기반 3차원 머신 비젼 시스템)

  • Kim, Min-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • This paper focuses on three-dimensional measurement system of micro balls on micro Ball-Grid-Array(BGA) packages in-line. Most of visual inspection system still suffers from sophisticate reflection characteristics of micro balls. For accurate shape measurement of them, a specially designed visual sensor system is proposed under the sensing principle of phase shifting moire interferometry. The system consists of a pattern projection system with four projection subsystems and an imaging system. In the projection system, four subsystems have spatially different projection directions to make target objects experience the pattern illuminations with different incident directions. For the phase shifting, each grating pattern of subsystem is regularly moved by PZT actuator. To remove specular noise and shadow area of BGA balls efficiently, a compact multiple-pattern projection and imaging system is implemented and tested. Especially, a sensor fusion algorithm to integrate four information sets, acquired from multiple projections, into one is proposed with the basis of Bayesian sensor fusion theory. To see how the proposed system works, a series of experiments is performed and the results are analyzed in detail.