• Title/Summary/Keyword: Bayesian fusion

Search Result 48, Processing Time 0.022 seconds

Bayesian Fusion of Confidence Measures for Confidence Scoring (베이시안 신뢰도 융합을 이용한 신뢰도 측정)

  • 김태윤;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.410-419
    • /
    • 2004
  • In this paper. we propose a method of confidence measure fusion under Bayesian framework for speech recognition. Centralized and distributed schemes are considered for confidence measure fusion. Centralized fusion is feature level fusion which combines the values of individual confidence scores and makes a final decision. In contrast. distributed fusion is decision level fusion which combines the individual decision makings made by each individual confidence measuring method. Optimal Bayesian fusion rules for centralized and distributed cases are presented. In isolated word Out-of-Vocabulary (OOV) rejection experiments. centralized Bayesian fusion shows over 13% relative equal error rate (EER) reduction compared with the individual confidence measure methods. In contrast. the distributed Bayesian fusion shows no significant performance increase.

A Study on the Data Fusion Algorithm under Operational Environment of the Sensors for Helicopter ASE System (헬기 생존계통 센서 운용 환경 하에서의 데이터 융합 알고리즘에 관한 연구)

  • Park, Young-Sun;Kim, Hwa-Soo;Kim, Sook-Gyeong;Wu, Sang-Min;Jung, Hun-Gi
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.3
    • /
    • pp.79-92
    • /
    • 2008
  • The purpose of this paper is to design an algorithm for data fusion of sensors data in the helicopter ASE system, using Bayesian Network, which was selected among several knowledge base data fusion methods after consideration and applied to this study. The result of the algorithm analysis shows that Bayesian Network is effective method for solving this problem.

A Development of Wireless Sensor Networks for Collaborative Sensor Fusion Based Speaker Gender Classification (협동 센서 융합 기반 화자 성별 분류를 위한 무선 센서네트워크 개발)

  • Kwon, Ho-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.113-118
    • /
    • 2011
  • In this paper, we develop a speaker gender classification technique using collaborative sensor fusion for use in a wireless sensor network. The distributed sensor nodes remove the unwanted input data using the BER(Band Energy Ration) based voice activity detection, process only the relevant data, and transmit the hard labeled decisions to the fusion center where a global decision fusion is carried out. This takes advantages of power consumption and network resource management. The Bayesian sensor fusion and the global weighting decision fusion methods are proposed to achieve the gender classification. As the number of the sensor nodes varies, the Bayesian sensor fusion yields the best classification accuracy using the optimal operating points of the ROC(Receiver Operating Characteristic) curves_ For the weights used in the global decision fusion, the BER and MCL(Mutual Confidence Level) are employed to effectively combined at the fusion center. The simulation results show that as the number of the sensor nodes increases, the classification accuracy was even more improved in the low SNR(Signal to Noise Ration) condition.

Evaluation of Geo-based Image Fusion on Mobile Cloud Environment using Histogram Similarity Analysis

  • Lee, Kiwon;Kang, Sanggoo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Mobility and cloud platform have become the dominant paradigm to develop web services dealing with huge and diverse digital contents for scientific solution or engineering application. These two trends are technically combined into mobile cloud computing environment taking beneficial points from each. The intention of this study is to design and implement a mobile cloud application for remotely sensed image fusion for the further practical geo-based mobile services. In this implementation, the system architecture consists of two parts: mobile web client and cloud application server. Mobile web client is for user interface regarding image fusion application processing and image visualization and for mobile web service of data listing and browsing. Cloud application server works on OpenStack, open source cloud platform. In this part, three server instances are generated as web server instance, tiling server instance, and fusion server instance. With metadata browsing of the processing data, image fusion by Bayesian approach is performed using functions within Orfeo Toolbox (OTB), open source remote sensing library. In addition, similarity of fused images with respect to input image set is estimated by histogram distance metrics. This result can be used as the reference criterion for user parameter choice on Bayesian image fusion. It is thought that the implementation strategy for mobile cloud application based on full open sources provides good points for a mobile service supporting specific remote sensing functions, besides image fusion schemes, by user demands to expand remote sensing application fields.

Application of Bayesian Statistical Analysis to Multisource Data Integration

  • Hong, Sa-Hyun;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.394-399
    • /
    • 2002
  • In this paper, Multisource data classification methods based on Bayesian formula are considered. For this decision fusion scheme, the individual data sources are handled separately by statistical classification algorithms and then Bayesian fusion method is applied to integrate from the available data sources. This method includes the combination of each expert decisions where the weights of the individual experts represent the reliability of the sources. The reliability measure used in the statistical approach is common to all pixels in previous work. In this experiment, the weight factors have been assigned to have different value for all pixels in order to improve the integrated classification accuracies. Although most implementations of Bayesian classification approaches assume fixed a priori probabilities, we have used adaptive a priori probabilities by iteratively calculating the local a priori probabilities so as to maximize the posteriori probabilities. The effectiveness of the proposed method is at first demonstrated on simulations with artificial and evaluated in terms of real-world data sets. As a result, we have shown that Bayesian statistical fusion scheme performs well on multispectral data classification.

  • PDF

Analysis and Optimization of Cooperative Spectrum Sensing with Noisy Decision Transmission

  • Liu, Quan;Gao, Jun;Guo, Yunwei;Liu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.649-664
    • /
    • 2011
  • Cooperative spectrum sensing (CSS) with decision fusion is considered as a key technology for tackling the challenges caused by fading/shadowing effects and noise uncertainty in spectrum sensing in cognitive radio. However, most existing solutions assume an error-free decision transmission, which is obviously not the case in realistic scenarios. This paper extends the general decision-fusion-based CSS scheme by considering the fading/shadowing effects and noise corruption in the common control channels. With this more practical model, the fusion centre first estimates the local decisions using a binary minimum error probability detector, and then combines them to get the final result. Theoretical analysis and simulation of this CSS scheme are performed over typical channels, which suggest some performance deterioration compared with the pure case that assumes an error-free decision transmission. Furthermore, the fusion strategy optimization in the proposed cooperation model is also investigated using the Bayesian criteria. The numerical results show that the total error rate of noisy CSS is higher than that of the pure case, and the optimal values of fusion parameter in the counting rule under both cases decrease as the local detection threshold increases.

Combining Geostatistical Indicator Kriging with Bayesian Approach for Supervised Classification

  • Park, No-Wook;Chi, Kwang-Hoon;Moon, Wooil-M.;Kwon, Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.382-387
    • /
    • 2002
  • In this paper, we propose a geostatistical approach incorporated to the Bayesian data fusion technique for supervised classification of multi-sensor remote sensing data. Traditional spectral based classification cannot account for the spatial information and may result in unrealistic classification results. To obtain accurate spatial/contextual information, the indicator kriging that allows one to estimate the probability of occurrence of classes on the basis of surrounding observations is incorporated into the Bayesian framework. This approach has its merit incorporating both the spectral information and spatial information and improves the confidence level in the final data fusion task. To illustrate the proposed scheme, supervised classification of multi-sensor test remote sensing data set was carried out.

  • PDF

Visual Attention Model Based on Particle Filter

  • Liu, Long;Wei, Wei;Li, Xianli;Pan, Yafeng;Song, Houbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3791-3805
    • /
    • 2016
  • The visual attention mechanism includes 2 attention models, the bottom-up (B-U) and the top-down (T-D), the physiology of which have not yet been accurately described. In this paper, the visual attention mechanism is regarded as a Bayesian fusion process, and a visual attention model based on particle filter is proposed. Under certain particular assumed conditions, a calculation formula of Bayesian posterior probability is deduced. The visual attention fusion process based on the particle filter is realized through importance sampling, particle weight updating, and resampling, and visual attention is finally determined by the particle distribution state. The test results of multigroup images show that the calculation result of this model has better subjective and objective effects than that of other models.

Bayesian Statistical Modeling of System Energy Saving Effectiveness for MAC Protocols of Wireless Sensor Networks: The Case of Non-Informative Prior Knowledge

  • Kim, Myong-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.890-900
    • /
    • 2010
  • The Bayesian networks methods provide an efficient tool for performing information fusion and decision making under conditions of uncertainty. This paper proposes Bayes estimators for the system effectiveness in energy saving of the wireless sensor networks by use of the Bayesian method under the non-informative prior knowledge about means of active and sleep times based on time frames of sensor nodes in a wireless sensor network. And then, we conduct a case study on some Bayesian estimation models for the system energy saving effectiveness of a wireless sensor network, and evaluate and compare the performance of proposed Bayesian estimates of the system effectiveness in energy saving of the wireless sensor network. In the case study, we have recognized that the proposed Bayesian system energy saving effectiveness estimators are excellent to adapt in evaluation of energy efficiency using non-informative prior knowledge from previous experience with robustness according to given values of parameters.

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.