Kwan Hong;Young June Choe;Young Hwa Lee;Yoonsun Yoon;Yun-Kyung Kim
Pediatric Infection and Vaccine
/
제31권1호
/
pp.55-63
/
2024
목적: 수두 감염에 대한 백신 효과성을 높이기 위해 수두백신 2회접종 전략이 여러 국가에 도입이 되었다. 본 연구에서는 Bayesian 모델을 통해 수두 예방 접종 전략의 종합적인 평가와 효과를 제공하고자 한다. 방법: 체계적 문헌고찰을 통해 수집된 연구에 대해 1회 및 2회 접종, 인구특성 및 관심대상결과와 같은 결과값들을 수집했다. 다양한 접종 횟수를 포함하는 연구의 경우 동일한 투여 횟수에 대한 데이터를 하나의 그룹으로 집계했다. 수두 백신의 1회 및 2회 접종의 예방 효과는 오즈 비 (OR) 및 해당하는 95% 신뢰 구간 (95% CI)을 기준으로 평가하였다. 결과: 문헌 검색을 통해 총 903개의 연구가 검색되었고, Bayesian 네트워크 메타 분석을 위해 25개의 개입 또는 관찰 연구가 선택되었다. 총 49,265명의 관찰 대상자가 이 연구에 포함되었다. 미접종군과 비교하여, 모든 수두 감염의 OR은 각각 2회 및 1회 접종에 대해 0.087 (95% CI, 0.046-0.164) 및 0.310 (95% CI, 0.198-0.484)이었으며, 이는 각각 1회 및 2회의 VE가 각각 69.0% (95% CI, 51.6-81.2) 및 91.3% (95% CI, 83.6-95.4)에 해당한다. 결론: 체계적인 검토 및 네트워크 메타 분석 결과, 2회 접종 백신 전략은 수두 감염 부담을 크게 감소시키는 것을 확인하였고, 2회 접종을 받은 어린이들은 1회 접종을 받은 어린이들보다 수두 감염 위험이 낮았으며, 유행 발생 시 더 나은 보호를 받는 것을 확인하였다.
Purpose: Survival analysis of gastric cancer patients requires knowledge about factors that affect survival time. This paper attempted to analyze the survival of patients with incomplete registered data by using imputation methods. Materials and Methods: Three missing data imputation methods, including regression, expectation maximization algorithm, and multiple imputation (MI) using Monte Carlo Markov Chain methods, were applied to the data of cancer patients referred to the cancer institute at Imam Khomeini Hospital in Tehran in 2003 to 2008. The data included demographic variables, survival times, and censored variable of 471 patients with gastric cancer. After using imputation methods to account for missing covariate data, the data were analyzed using a Cox regression model and the results were compared. Results: The mean patient survival time after diagnosis was $49.1{\pm}4.4$ months. In the complete case analysis, which used information from 100 of the 471 patients, very wide and uninformative confidence intervals were obtained for the chemotherapy and surgery hazard ratios (HRs). However, after imputation, the maximum confidence interval widths for the chemotherapy and surgery HRs were 8.470 and 0.806, respectively. The minimum width corresponded with MI. Furthermore, the minimum Bayesian and Akaike information criteria values correlated with MI (-821.236 and -827.866, respectively). Conclusions: Missing value imputation increased the estimate precision and accuracy. In addition, MI yielded better results when compared with the expectation maximization algorithm and regression simple imputation methods.
Background: Solitary pulmonary nodules (SPN) are encountered incidentally in 0.2% of patients who undergo chest X-ray or chest CT. Although SPN has malignant potential, it cannot be treated surgically by biopsy in all patients. The first stage is to determine if patients with SPN require periodic observation and biopsy or resection. An important early step in the management of patients with SPN is to estimate the clinical pretest probability of a malignancy. In every patient with SPN, it is recommended that clinicians estimate the pretest probability of a malignancy either qualitatively using clinical judgment or quantitatively using a validated model. This study examined whether Bayesian analysis or multiple logistic regression analysis is more predictive of the probability of a malignancy in SPN. Methods: From January 2005 to December 2008, this study enrolled 63 participants with SPN at the Kangnam Sacred Hospital. The accuracy of Bayesian analysis and Bayesian analysis with a FDG-PET scan, and Multiple logistic regression analysis was compared retrospectively. The accurate probability of a malignancy in a patient was compared by taking the chest CT and pathology of SPN patients with <30 mm at CXR incidentally. Results: From those participated in study, 27 people (42.9%) were classified as having a malignancy, and 36 people were benign. The result of the malignant estimation by Bayesian analysis was 0.779 (95% confidence interval [CI], 0.657 to 0.874). Using Multiple logistic regression analysis, the result was 0.684 (95% CI, 0.555 to 0.796). This suggests that Bayesian analysis provides a more accurate examination than multiple logistic regression analysis. Conclusion: Bayesian analysis is better than multiple logistic regression analysis in predicting the probability of a malignancy in solitary pulmonary nodules but the difference was not statistically significant.
This study is aimed to take a stock assessment of blackthroat seaperch Doederleinia seaperch regarding the fishing effort of large-powered Danish Seine Fishery and Southwest Sea Danish Seine Fishery. For the assessment, the state-space model was implemented and the standardized catch per unit effort (CPUE) of large powered Danish Seine Fishery and Southwest Sea Danish Seine Fishery which is necessary for the model was estimated with generalized linear model (GLM). The model was adequate for stock assessment because its r-square value was 0.99 and root mean square error (RMSE) value was 0.003. According to the model with 95% confidence interval, maximum sustainable yield (MSY) of Blackthroat seaperch is from 2,634 to 6,765 ton and carrying capacity (K) is between 33,180 and 62,820. Also, the catchability coefficient (q) is between 2.14E-06 and 3.95E-06 and intrinsic growth rate (r) is between 0.31 and 0.72.
설문조사를 실시할 때 응답자가 설문조사의 일부 문항에 대하여 응답하지 않는 경우 항목무응답이 발생한다. 무응답이 발생한 자료를 제외하고 완전하게 응답된 자료 만에 근거한 분석은 분석 결과에 편의가 발생할 수 있으므로, 이를 채워 넣어 완전한 형태의 자료로 분석하기 위해서 무응답 대체가 흔히 사용되고 있으며 여러 가지 무응답 대체 기법들을 비교하는 연구들도 많이 존재한다. 패널조사 연구는 연구 대상 패널에 대하여 정해진 시간에 따라 반복적으로 동일한 설문 문항에 대하여 응답을 조사하여 시간에 따른 변화를 살펴보는 조사 방법을 나타낸다. 패널조사 자료의 항목 무응답을 대체할 때 이전 시점의 응답 자료가 존재한다면 이를 포함하여 대체를 실시하는 것이 바람직한 것으로 여겨져 왔으나 이에 관한 직접적인 연구는 찾기 힘들다. 따라서 본 연구에서는 패널자료에서 이전 시점의 정보를 고려하지 않고 대체를 실시하는 방법과 이전 시점의 정보를 활용하여 대체하는 방법들 중에서 어느 대체 방법이 보다 적절한 대체를 제공하는지 살펴보았다. 특히 이전 시점의 응답 정보를 이용하는 방법인 비대체, 선형혼합모형을 이용한 대체와 선형혼합모형에 근거한 베이지안 대체 방법을 고려하였고, 이를 이전 시점의 정보를 고려하지 않는 대체 방법들 중 흔히 사용되는 평균대체, 핫덱대체 방법과 비교하였다. 모의실험 결과 선형혼합모형에 근거한 베이지 안 대체 방법이 다른 대체 방법에 비해 무응답 비율이 높아지더라도 편의도 작으며 평균에 관한 95% 신뢰구간의 포함률도 높게 나타나서 가장 좋은 대체 방법으로 확인되었다.
Mansori, Kamyar;Solaymani-Dodaran, Masoud;Mosavi-Jarrahi, Alireza;Motlagh, Ali Ganbary;Salehi, Masoud;Delavari, Alireza;Asadi-Lari, Mohsen
Journal of Preventive Medicine and Public Health
/
제51권1호
/
pp.33-40
/
2018
Objectives: The aim of this study was to determine the factors associated with the spatial distribution of the incidence of colorectal cancer (CRC) in the neighborhoods of Tehran, Iran using Bayesian spatial models. Methods: This ecological study was implemented in Tehran on the neighborhood level. Socioeconomic variables, risk factors, and health costs were extracted from the Equity Assessment Study conducted in Tehran. The data on CRC incidence were extracted from the Iranian population-based cancer registry. The $Besag-York-Molli{\acute{e}}$ (BYM) model was used to identify factors associated with the spatial distribution of CRC incidence. The software programs OpenBUGS version 3.2.3, ArcGIS 10.3, and GeoDa were used for the analysis. Results: The Moran index was statistically significant for all the variables studied (p<0.05). The BYM model showed that having a women head of household (median standardized incidence ratio [SIR], 1.63; 95% confidence interval [CI], 1.06 to 2.53), living in a rental house (median SIR, 0.82; 95% CI, 0.71 to 0.96), not consuming milk daily (median SIR, 0.71; 95% CI, 0.55 to 0.94) and having greater household health expenditures (median SIR, 1.34; 95% CI, 1.06 to 1.68) were associated with a statistically significant elevation in the SIR of CRC. The median (interquartile range) and mean (standard deviation) values of the SIR of CRC, with the inclusion of all the variables studied in the model, were 0.57 (1.01) and 1.05 (1.31), respectively. Conclusions: Inequality was found in the spatial distribution of CRC incidence in Tehran on the neighborhood level. Paying attention to this inequality and the factors associated with it may be useful for resource allocation and developing preventive strategies in at-risk areas.
본 연구에서는 ISO GUM(불확도 표현 지침서)의 불확도 평가 방법을 보완하기 위해, 몬테카를로 방법(Monte Carlo Method, MCM)을 적용한 불확도 해석 프로그램을 개발하고, MCM과 GUM의 평가 결과를 비교하였다. 그 결과 다음과 같은 결과를 도출하였다. 첫째, 측정량의 확률 분포가 정규 분포가 아닌 때에도 MCM 방법은 정확한 포함 구간을 제공한다. 둘째, 정규 분포가 아닌 다른 분포들 몇몇 개가 합성되는 경우 그 확률 분포가 정규로 보이더라도 실제로는 정규가 아닌 경우가 있으며, 이의 판단은 합성 분산의 확률 분포로 할 수 있다. 셋째, 자유도가 낮은 A형 불확도가 불확도 평가에 포함된 경우 GUM은 포함 구간을 저평가하는 것을 알 수 있었고, 이러한 저평가 문제는 A형 표준 불확도에 t-분포의 표준 편차를 곱해주면 사라지는 것을 알 수 있었다. 이 경우 합성 분산의 유효 자유도는 확장 불확도 계산에 불필요하고, 신뢰의 수준 95 %의 포함 인자는 1.96이 적정한 것을 알 수 있었다.
소나무의 유전다양성과 유전구조를 추정하기 위해 9개의 ESTP 표지를 13개 소나무 집단에 적용하였다. 소나무 집단의 유전다양성은 관찰된 대립유전자 수(A)가 2.2개, 유효 대립유전자 수(Ae)가 1.8개, 다형적 유전자좌 비율(P)이 98.8%, 이형접합도 관찰치(Ho)가 0.391, 이형접합도 기대치(He)가 0.402로 나타났다. 안강과 강릉 집단을 제외한 11개 집단이 하디-바인베르그 평형을 만족하였다. 집단간 유전분화도(FST)는 0.057으로, 동위효소나 nSSR 표지분석 결과보다 강하게 나타났다. 군집분석에서 집단의 유전적 거리와 지리적 분포간에 뚜렷한 연관성은 확인할 수 없었으며, 집단의 유전분화와 지리적 인접성도 상관이 없는 것으로 나타났다(Mantel 검증, r = 0.017, P = 0.344). 유전자좌에 대한 FST-outlier 분석을 실시한 결과, 빈도주의 방법에서는 FST 값이 신뢰하한 이하인 3개 유전자좌와 신뢰상한 이상인 3개 유전자좌가 특이값으로 추정되었고, 베이즈 방법에서는 3개 유전자좌들만 특이값으로 확인되었다. 두 방법에서 공히 특이값으로 판정된 3개 유전자좌(sams2+AluⅠ, sams2+RsaⅠ, PtNCS_p14A9+HaeⅢ)중 sams2 표지에서 유래된 2개 유전자좌는 balancing selection의 영향을 받는 것으로 추정되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.