• Title/Summary/Keyword: Bayesian Rule

Search Result 95, Processing Time 0.025 seconds

Improvement of Hydrologic Dam Risk Analysis Model Considering Uncertainty of Hydrologic Analysis Process (수문해석과정의 불확실성을 고려한 수문학적 댐 위험도 해석 기법 개선)

  • Na, Bong-Kil;Kim, Jin-Young;Kwon, Hyun-Han;Lim, Jeong-Yeul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.853-865
    • /
    • 2014
  • Hydrologic dam risk analysis depends on complex hydrologic analyses in that probabilistic relationship need to be established to quantify various uncertainties associated modeling process and inputs. However, the systematic approaches to uncertainty analysis for hydrologic risk analysis have not been addressed yet. In this paper, two major innovations are introduced to address this situation. The first is the use of a Hierarchical Bayesian model based regional frequency analysis to better convey uncertainties associated with the parameters of probability density function to the dam risk analysis. The second is the use of Bayesian model coupled HEC-1 rainfall-runoff model to estimate posterior distributions of the model parameters. A reservoir routing analysis with the existing operation rule was performed to convert the inflow scenarios into water surface level scenarios. Performance functions for dam risk model was finally employed to estimate hydrologic dam risk analysis. An application to the Dam in South Korea illustrates how the proposed approach can lead to potentially reliable estimates of dam safety, and an assessment of their sensitivity to the initial water surface level.

A Novel Method for Emotion Recognition based on the EEG Signal using Gradients (EEG 신호 기반 경사도 방법을 통한 감정인식에 대한 연구)

  • Han, EuiHwan;Cha, HyungTai
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.71-78
    • /
    • 2017
  • There are several algorithms to classify emotion, such as Support-vector-machine (SVM), Bayesian decision rule, etc. However, many researchers have insisted that these methods have minor problems. Therefore, in this paper, we propose a novel method for emotion recognition based on Electroencephalogram (EEG) signal using the Gradient method which was proposed by Han. We also utilize a database for emotion analysis using physiological signals (DEAP) to obtain objective data. And we acquire four channel brainwaves, including Fz (${\alpha}$), Fp2 (${\beta}$), F3 (${\alpha}$), F4 (${\alpha}$) which are selected in previous study. We use 4 features which are power spectral density (PSD) of the above channels. According to performance evaluation (4-fold cross validation), we could get 85% accuracy in valence axis and 87.5% in arousal. It is 5-7% higher than existing method's.

A New Image Analysis Method based on Regression Manifold 3-D PCA (회귀 매니폴드 3-D PCA 기반 새로운 이미지 분석 방법)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.103-108
    • /
    • 2022
  • In this paper, we propose a new image analysis method based on regression manifold 3-D PCA. The proposed method is a new image analysis method consisting of a regression analysis algorithm with a structure designed based on an autoencoder capable of nonlinear expansion of manifold 3-D PCA and PCA for efficient dimension reduction when entering large-capacity image data. With the configuration of an autoencoder, a regression manifold 3-DPCA, which derives the best hyperplane through three-dimensional rotation of image pixel values, and a Bayesian rule structure similar to a deep learning structure, are applied. Experiments are performed to verify performance. The image is improved by utilizing the fine dust image, and accuracy performance evaluation is performed through the classification model. As a result, it can be confirmed that it is effective for deep learning performance.

Analysis and Optimization of Cooperative Spectrum Sensing with Noisy Decision Transmission

  • Liu, Quan;Gao, Jun;Guo, Yunwei;Liu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.649-664
    • /
    • 2011
  • Cooperative spectrum sensing (CSS) with decision fusion is considered as a key technology for tackling the challenges caused by fading/shadowing effects and noise uncertainty in spectrum sensing in cognitive radio. However, most existing solutions assume an error-free decision transmission, which is obviously not the case in realistic scenarios. This paper extends the general decision-fusion-based CSS scheme by considering the fading/shadowing effects and noise corruption in the common control channels. With this more practical model, the fusion centre first estimates the local decisions using a binary minimum error probability detector, and then combines them to get the final result. Theoretical analysis and simulation of this CSS scheme are performed over typical channels, which suggest some performance deterioration compared with the pure case that assumes an error-free decision transmission. Furthermore, the fusion strategy optimization in the proposed cooperation model is also investigated using the Bayesian criteria. The numerical results show that the total error rate of noisy CSS is higher than that of the pure case, and the optimal values of fusion parameter in the counting rule under both cases decrease as the local detection threshold increases.

Visual Object Tracking based on Particle Filters with Multiple Observation (다중 관측 모델을 적용한 입자 필터 기반 물체 추적)

  • Koh, Hyeung-Seong;Jo, Yong-Gun;Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.539-544
    • /
    • 2004
  • We investigate a visual object tracking algorithm based upon particle filters, namely CONDENSATION, in order to combine multiple observation models such as active contours of digitally subtracted image and the particle measurement of object color. The former is applied to matching the contour of the moving target and the latter is used to independently enhance the likelihood of tracking a particular color of the object. Particle filters are more efficient than any other tracking algorithms because the tracking mechanism follows Bayesian inference rule of conditional probability propagation. In the experimental results, it is demonstrated that the suggested contour tracking particle filters prove to be robust in the cluttered environment of robot vision.

The Effectiveness Analysis of Multistatic Sonar Network Via Detection Peformance (표적탐지성능을 이용한 다중상태 소나의 효과도 분석)

  • Jang, Jae-Hoon;Ku, Bon-Hwa;Hong, Woo-Young;Kim, In-Ik;Ko, Han-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.24-32
    • /
    • 2006
  • This paper is to analyze the effectiveness of multistatic sonar network based on detection performance. The multistatic sonar network is a distributed detection system that places a source and multi-receivers apart. So it needs a detection technique that relates to decision rule and optimization of sonar system to improve the detection performance. For this we propose a data fusion procedure using Bayesian decision and optimal sensor arrangement by optimizing a bistatic sonar. Also, to analyze the detection performance effectively, we propose the environmental model that simulates a propagation loss and target strength suitable for multistatic sonar networks in real surroundings. The effectiveness analysis on the multistatic sonar network confirms itself as a promising tool for effective allocation of detection resources in multistatic sonar system.

A Study on the Gesture Recognition Using the Particle Filter Algorithm (Particle Filter를 이용한 제스처 인식 연구)

  • Lee, Yang-Weon;Kim, Chul-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2032-2038
    • /
    • 2006
  • The recognition of human gestures in image sequences is an important and challenging problem that enables a host of human-computer interaction applications. This paper describes a gesture recognition algorithm based on the particle filters, namely CONDENSATION. The particle filter is more efficient than any other tracking algorithm because the tracking mechanism follows Bayesian estimation rule of conditional probability propagation. We used two models for the evaluation of particle Inter and apply the MATLAB for the preprocessing of the image sequence. But we implement the particle filter using the C++ to get the high speed processing. In the experimental results, it is demonstrated that the proposed algorithm prove to be robust in the cluttered environment.

A Study on the Gesture Recognition Based on the Particle Filter Using CONDENSATION Algorithm (CONDENSATION 알고리즘을 이용한 입자필터 기반 동작 인식 연구)

  • Lee, Yang-Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.584-591
    • /
    • 2007
  • The recognition of human gestures in image sequences is an important and challenging problem that enables a host of human-computer interaction applications. This paper describes a gesture recognition algorithm based on the particle filters, namely CONDENSATION. The particle filter is more efficient than any other tracking algorithm because the tracking mechanism follows Bayesian estimation rule of conditional probability propagation. We used two models for the evaluation of particle filter and apply the MAILAB for the preprocessing of the image sequence. But we implement the particle filter using the C++ to get the high speed processing. In the experimental results, it is demonstrated that the proposed algorithm prove to be robust in the cluttered environment.

Rule Generation and Approximate Inference Algorithms for Efficient Information Retrieval within a Fuzzy Knowledge Base (퍼지지식베이스에서의 효율적인 정보검색을 위한 규칙생성 및 근사추론 알고리듬 설계)

  • Kim Hyung-Soo
    • Journal of Digital Contents Society
    • /
    • v.2 no.2
    • /
    • pp.103-115
    • /
    • 2001
  • This paper proposes the two algorithms which generate a minimal decision rule and approximate inference operation, adapted the rough set and the factor space theory in fuzzy knowledge base. The generation of the minimal decision rule is executed by the data classification technique and reduct applying the correlation analysis and the Bayesian theorem related attribute factors. To retrieve the specific object, this paper proposes the approximate inference method defining the membership function and the combination operation of t-norm in the minimal knowledge base composed of decision rule. We compare the suggested algorithms with the other retrieval theories such as possibility theory, factor space theory, Max-Min, Max-product and Max-average composition operations through the simulation generating the object numbers and the attribute values randomly as the memory size grows. With the result of the comparison, we prove that the suggested algorithm technique is faster than the previous ones to retrieve the object in access time.

  • PDF

Ontology-based User Intention Recognition for Proactive Planning of Intelligent Robot Behavior (지능형로봇 행동의 능동적 계획수립을 위한 온톨로지 기반 사용자 의도인식)

  • Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.86-99
    • /
    • 2011
  • Due to the uncertainty of intention recognition for behaviors of users, the intention is differently recognized according to the situation for the same behavior by the same user, the accuracy of user intention recognition by minimizing the uncertainty is able to be improved. This paper suggests a novel ontology-based method to recognize user intentions, and able to minimize the uncertainties that are the obstacles against the precise recognition of user intention. This approach creates ontology for user intention, makes a hierarchy and relationship among user intentions by using RuleML as well as Dynamic Bayesian Network, and improves the accuracy of user intention recognition by using the defined RuleML as well as the gathered sensor data such as temperature, humidity, vision, and auditory. To evaluate the performance of robot proactive planning mechanism, we developed a simulator, carried out some experiments to measure the accuracy of user intention recognition for all possible situations, and analyzed and detailed described the results. The result of our experiments represented relatively high level the accuracy of user intention recognition. On the other hand, the result of experiments tells us the fact that the actions including the uncertainty get in the way the precise user intention recognition.