• Title/Summary/Keyword: Bayesian Posterior Probability

Search Result 123, Processing Time 0.036 seconds

Bayesian Outlier Detection in Regression Model

  • Younshik Chung;Kim, Hyungsoon
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.311-324
    • /
    • 1999
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for an outlier problem and also analyze it in linear regression model using a Bayesian approach. Then we use the mean-shift model and SSVS(George and McCulloch, 1993)'s idea which is based on the data augmentation method. The advantage of proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability. The MCMC method(Gibbs sampler) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data and a real data.

  • PDF

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

A Bayesian Approach to Detecting Outliers Using Variance-Inflation Model

  • Lee, Sangjeen;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.805-814
    • /
    • 2001
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for outliers problem and also analyze it in linear regression model using a Bayesian approach with the variance-inflation model. We will use Geweke's(1996) ideas which is based on the data augmentation method for detecting outliers in linear regression model. The advantage of the proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability The sampling based approach can be used to allow the complicated Bayesian computation. Finally, our proposed methodology is applied to a simulated and a real data.

  • PDF

Three-dimensional object recognition using efficient indexing:Part I-bayesian indexing (효율적인 인덱싱 기법을 이용한 3차원 물체 인식:Part I-Bayesian 인덱싱)

  • 이준호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.10
    • /
    • pp.67-75
    • /
    • 1997
  • A design for a system to perform rapid recognition of three dimensional objects is presented, focusing on efficient indexing. In order to retrieve the best matched models without exploring all possible object matches, we have employed a bayesian framework. A decision-theoretic measure of the discriminatory power of a feature for a model object is defined in terms of posterior probability. Detectability of a featrue defined as a function of the feature itselt, viewpoint, sensor charcteristics, nd the feature detection algorithm(s) is also considered in the computation of discribminatory power. In order to speed up the indexing or selection of correct objects, we generate and verify the object hypotheses for rfeatures detected in a scene in the order of the discriminatory power of these features for model objects.

  • PDF

Bayesian Reliability Estimation for Small Sample-Sized One-shot Devices (작은 샘플 크기의 One-shot Devices를 위한 베이지안 신뢰도 추정)

  • Mun, Byeong Min;Sun, Eun Joo;Bae, Suk Joo
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.99-107
    • /
    • 2013
  • One-shot device is required to successfully perform its function only once at the moment of use. The reliability of a one-shot device should be expressed as a probability of success. In this paper, we propose a bayesian approach for estimating reliability of one-shot devices with small sample size. We employ a gamma prior to obtain the posterior distribution. Finally, we compare the accuracy of the proposed method with general maximum likelihood method.

Interval Estimation for a Binomial Proportion Based on Weighted Polya Posterior (이항 비율의 가중 POLYA POSTERIOR 구간추정)

  • Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.607-615
    • /
    • 2005
  • Recently the interval estimation of a binomial proportion is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the will-known Wald confidence interval. Various alternatives have been proposed. Among them, Agresti-Coull confidence interval has been recommended by Brown et al. (2001) with other confidence intervals for large sample, say n $\ge$ 40. On the other hand, a noninformative Bayesian approach called Polya posterior often produces statistics with good frequentist's properties. In this note, an interval estimator is developed using weighted Polya posterior. The resulting interval estimator is essentially the Agresti-Coull confidence interval with some improved features. It is shown that the weighted Polys posterior produce an effective interval estimator for small sample size and a severely skewed binomial distribution.

Application of peak based-Bayesian statistical method for isotope identification and categorization of depleted, natural and low enriched uranium measured by LaBr3:Ce scintillation detector

  • Haluk Yucel;Selin Saatci Tuzuner;Charles Massey
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3913-3923
    • /
    • 2023
  • Todays, medium energy resolution detectors are preferably used in radioisotope identification devices(RID) in nuclear and radioactive material categorization. However, there is still a need to develop or enhance « automated identifiers » for the useful RID algorithms. To decide whether any material is SNM or NORM, a key parameter is the better energy resolution of the detector. Although masking, shielding and gain shift/stabilization and other affecting parameters on site are also important for successful operations, the suitability of the RID algorithm is also a critical point to enhance the identification reliability while extracting the features from the spectral analysis. In this study, a RID algorithm based on Bayesian statistical method has been modified for medium energy resolution detectors and applied to the uranium gamma-ray spectra taken by a LaBr3:Ce detector. The present Bayesian RID algorithm covers up to 2000 keV energy range. It uses the peak centroids, the peak areas from the measured gamma-ray spectra. The extraction features are derived from the peak-based Bayesian classifiers to estimate a posterior probability for each isotope in the ANSI library. The program operations were tested under a MATLAB platform. The present peak based Bayesian RID algorithm was validated by using single isotopes(241Am, 57Co, 137Cs, 54Mn, 60Co), and then applied to five standard nuclear materials(0.32-4.51% at.235U), as well as natural U- and Th-ores. The ID performance of the RID algorithm was quantified in terms of F-score for each isotope. The posterior probability is calculated to be 54.5-74.4% for 238U and 4.7-10.5% for 235U in EC-NRM171 uranium materials. For the case of the more complex gamma-ray spectra from CRMs, the total scoring (ST) method was preferred for its ID performance evaluation. It was shown that the present peak based Bayesian RID algorithm can be applied to identify 235U and 238U isotopes in LEU or natural U-Th samples if a medium energy resolution detector is was in the measurements.

Concept of Trend Analysis of Hydrologic Extreme Variables and Nonstationary Frequency Analysis (극치수문자료의 경향성 분석 개념 및 비정상성 빈도해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.389-397
    • /
    • 2010
  • This study introduced a Bayesian based frequency analysis in which the statistical trend analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both Gumbel distribution and trend analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.

Prediction of extreme rainfall with a generalized extreme value distribution (일반화 극단 분포를 이용한 강우량 예측)

  • Sung, Yong Kyu;Sohn, Joong K.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.857-865
    • /
    • 2013
  • Extreme rainfall causes heavy losses in human life and properties. Hence many works have been done to predict extreme rainfall by using extreme value distributions. In this study, we use a generalized extreme value distribution to derive the posterior predictive density with hierarchical Bayesian approach based on the data of Seoul area from 1973 to 2010. It becomes clear that the probability of the extreme rainfall is increasing for last 20 years in Seoul area and the model proposed works relatively well for both point prediction and predictive interval approach.

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.