• Title/Summary/Keyword: Bayesian Posterior Probability

Search Result 123, Processing Time 0.025 seconds

Spatial-Temporal Drought Analysis of South Korea Based On Neural Networks (신경망을 이용한 우리나라의 시공간적 가뭄의 해석)

  • Sin, Hyeon-Seok;Park, Mu-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.15-29
    • /
    • 1999
  • A new methodology to analyze and quantify regional meteorological drought based on annual precipitation data has been introduced in this paper In this study, based on posterior probability estimator and Bayesian classifier in Spatial Analysis Neural Network (SANN), point drought probabilities categorized as extreme, severe, mild, and non drought events has been defined, and a Bayesian Drought Severity Index (BPSI) has been introduced to classify the region of interest into four drought severities. In addition, to estimate the regional drought severity for the entire region, regional extreme, severe, mild, and non drought probabilities which are the areal averages of point drought probabilities over the region has been computed and applied. In this study, the proposed methodology has been applied to analyze the regional drought of South Korea during 1967-1996 years. The drought severity for the whole South Korea was defined spatially at each year and each year was classified in a drought severity criterion. The results may be useful for water manager to understand the South Korean drought with respect to the spatial and temporal variation.

  • PDF

A Bayesian Approach to Geophysical Inverse Problems (베이지안 방식에 의한 지구물리 역산 문제의 접근)

  • Oh Seokhoon;Chung Seung-Hwan;Kwon Byung-Doo;Lee Heuisoon;Jung Ho Jun;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.262-271
    • /
    • 2002
  • This study presents a practical procedure for the Bayesian inversion of geophysical data. We have applied geostatistical techniques for the acquisition of prior model information, then the Markov Chain Monte Carlo (MCMC) method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Noninformative Priors for Stress-Strength System in the Burr-Type X Model

  • Kim, Dal-Ho;Kang, Sang-Gil;Cho, Jang-Sik
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.1
    • /
    • pp.17-27
    • /
    • 2000
  • In this paper, we develop noninformative priors that are used for estimating the reliability of stress-strength system under the Burr-type X model. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible interval with the corresponding frequentist coverage probabilities. It turns out that the reference prior as well as the Jeffreys prior are the second order matching prior. The propriety of posterior under the noninformative priors is proved. The frequentist coverage probabilities are investigated for samll samples via simulation study.

  • PDF

FEASIBILITY MAPPING OF GROUND WATER YIELD CHARACTERISTICS USING WEIGHT OF EVIDENCE TECHNIQUE: A CASE STUDY

  • Heo, Seon-Hee;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.430-433
    • /
    • 2005
  • In this study, weight of evidence(WOE) technique based on the bayesian method was applied to estimate the groundwater yield characteristics in the Pocheon area in Kyungki-do. The ground water preservation depends on many hydrogeologic factors that include hydrologic data, landuse data, topographic data, geological map and other natural materials, even with man-made things. All these data can be digitally collected and managed by GIS database. In the applied technique of WOE, The prior probabilities were estimated as the factors that affect the yield on lineament, geology, drainage pattern or river system density, landuse and soil. We calculated the value of the Weight W+, W- of each factor and estimated the contrast value of it. Results by the ground water yield characteristic calculations were presented in the form of posterior probability map to the consideration of in-situ samples. It is concluded that this technique is regarded as one of the effective technique for the feasibility mapping related to detection of groundwater bearing zones and its spatial pattern.

  • PDF

Evolution Strategies Based Particle Filters for Simultaneous State and Parameter Estimation of Nonlinear Stochastic Models

  • Uosaki, K.;Hatanaka, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1765-1770
    • /
    • 2005
  • Recently, particle filters have attracted attentions for nonlinear state estimation. In this approaches, a posterior probability distribution of the state variable is evaluated based on observations in simulation using so-called importance sampling. We proposed a new filter, Evolution Strategies based particle (ESP) filter to circumvent degeneracy phenomena in the importance weights, which deteriorates the filter performance, and apply it to simultaneous state and parameter estimation of nonlinear state space models. Results of numerical simulation studies illustrate the applicability of this approach.

  • PDF

Noninformative Priors for Fieller-Creasy Problem using Unbalanced Data

  • Kim, Dal-Ho;Lee, Woo-Dong;Kang, Sang-Gil
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.71-84
    • /
    • 2005
  • The Fieller-Creasy problem involves statistical inference about the ratio of two independent normal means. It is difficult problem from either a frequentist or a likelihood perspective. As an alternatives, a Bayesian analysis with noninformative priors may provide a solution to this problem. In this paper, we extend the results of Yin and Ghosh (2001) to unbalanced sample case. We find various noninformative priors such as first and second order matching priors, reference and Jeffreys' priors. The posterior propriety under the proposed noninformative priors will be given. Using real data, we provide illustrative examples. Through simulation study, we compute the frequentist coverage probabilities for probability matching and reference priors. Some simulation results will be given.

  • PDF

On Estimation of HPD Interval for the Generalized Variance Using a Weighted Monte Carlo Method

  • Kim, Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.305-313
    • /
    • 2002
  • Regarding to inference about a scalar measure of internal scatter of Ρ-variate normal population, this paper considers an interval estimation of the generalized variance, │$\Sigma$│. Due to complicate sampling distribution, fully parametric frequentist approach for the interval estimation is not available and thus Bayesian method is pursued to calculate the highest probability density (HPD) interval for the generalized variance. It is seen that the marginal posterior distribution of the generalized variance is intractable, and hence a weighted Monte Carlo method, a variant of Chen and Shao (1999) method, is developed to calculate the HPD interval of the generalized variance. Necessary theories involved in the method and computation are provided. Finally, a simulation study is given to illustrate and examine the proposed method.

Efficient random number generation from extreme tail areas of a t-distribution (t 분포의 극단 꼬리부분으로부터의 효율적인 난수생성)

  • 오만숙;김나영
    • The Korean Journal of Applied Statistics
    • /
    • v.9 no.1
    • /
    • pp.165-177
    • /
    • 1996
  • It is often needed to generate random numbers from truncated t-distributions to carry out Bayesian inferences, especially in Monte Carlo integration for estimation of posterior densities of constrained parameters. However, when the restricted area is an extreme tail area with a small probability most existing random generation methods are not efficient. In this paper, we propose an efficient acceptance-rejection method to generate random numbers from extreme tail areas of a t-distribution. Using some simulation results, we compare the proposed algorithm with other popular methods.

  • PDF

Survival Analysis for White Non-Hispanic Female Breast Cancer Patients

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Stewart, Tiffanie Shauna-Jeanne;Bhatt, Chintan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4049-4054
    • /
    • 2014
  • Background: Race and ethnicity are significant factors in predicting survival time of breast cancer patients. In this study, we applied advanced statistical methods to predict the survival of White non-Hispanic female breast cancer patients, who were diagnosed between the years 1973 and 2009 in the United States (U.S.). Materials and Methods: Demographic data from the Surveillance Epidemiology and End Results (SEER) database were used for the purpose of this study. Nine states were randomly selected from 12 U.S. cancer registries. A stratified random sampling method was used to select 2,000 female breast cancer patients from these nine states. We compared four types of advanced statistical probability models to identify the best-fit model for the White non-Hispanic female breast cancer survival data. Three model building criterion were used to measure and compare goodness of fit of the models. These include Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC). In addition, we used a novel Bayesian method and the Markov Chain Monte Carlo technique to determine the posterior density function of the parameters. After evaluating the model parameters, we selected the model having the lowest DIC value. Using this Bayesian method, we derived the predictive survival density for future survival time and its related inferences. Results: The analytical sample of White non-Hispanic women included 2,000 breast cancer cases from the SEER database (1973-2009). The majority of cases were married (55.2%), the mean age of diagnosis was 63.61 years (SD = 14.24) and the mean survival time was 84 months (SD = 35.01). After comparing the four statistical models, results suggested that the exponentiated Weibull model (DIC= 19818.220) was a better fit for White non-Hispanic females' breast cancer survival data. This model predicted the survival times (in months) for White non-Hispanic women after implementation of precise estimates of the model parameters. Conclusions: By using modern model building criteria, we determined that the data best fit the exponentiated Weibull model. We incorporated precise estimates of the parameter into the predictive model and evaluated the survival inference for the White non-Hispanic female population. This method of analysis will assist researchers in making scientific and clinical conclusions when assessing survival time of breast cancer patients.