• Title/Summary/Keyword: Bayesian Model

Search Result 1,333, Processing Time 0.026 seconds

Inferential Problems in Bayesian Logistic Regression Models (베이지안 로지스틱 회귀모형에서의 추론에 대한 연구)

  • Hwang, Jin-Soo;Kang, Sung-Chan
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1149-1160
    • /
    • 2011
  • Model selection and hypothesis testing problems in Bayesian inference are still debated between scholars. Bayesian factors traditionally used as a criterion in Bayesian hypothesis testing and model selection, are easy to understand but sometimes hard to compute. In addition, there are other model selection criterions such as DIC(Deviance Information Criterion) by Spiegelhalter et al. (2002) and Bayesian P-values for testing. In this paper, we briefly introduce the Bayesian hypothesis testing and model selection procedure. In addition we have applied a Bayesian inference to Swiss banknote data by a fitting logistic regression model and computing several test statistics to see if they provide consistent results.

A Bayesian Approach for Record Value Statistics Model Using Nonhomogeneous Poisson Process

  • Kiheon Choi;Hee chual Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.259-269
    • /
    • 1997
  • Bayesian inference for a record value statistics(RVS) model of nonhomogeneous Poisson process is considered. We seal with Bayesian inference for double exponential, Gamma, Rayleigh, Gumble RVS models using Gibbs sampling and Metropolis algorithm and also explore Bayesian computation and model selection.

  • PDF

Decision Tree State Tying Modeling Using Parameter Estimation of Bayesian Method (Bayesian 기법의 모수 추정을 이용한 결정트리 상태 공유 모델링)

  • Oh, SangYeob
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.243-248
    • /
    • 2015
  • Recognition model is not defined when you configure a model, Been added to the model after model building awareness, Model a model of the clustering due to lack of recognition models are generated by modeling is causes the degradation of the recognition rate. In order to improve decision tree state tying modeling using parameter estimation of Bayesian method. The parameter estimation method is proposed Bayesian method to navigate through the model from the results of the decision tree based on the tying state according to the maximum probability method to determine the recognition model. According to our experiments on the simulation data generated by adding noise to clean speech, the proposed clustering method error rate reduction of 1.29% compared with baseline model, which is slightly better performance than the existing approach.

Leave-one-out Bayesian model averaging for probabilistic ensemble forecasting

  • Kim, Yongdai;Kim, Woosung;Ohn, Ilsang;Kim, Young-Oh
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2017
  • Over the last few decades, ensemble forecasts based on global climate models have become an important part of climate forecast due to the ability to reduce uncertainty in prediction. Moreover in ensemble forecast, assessing the prediction uncertainty is as important as estimating the optimal weights, and this is achieved through a probabilistic forecast which is based on the predictive distribution of future climate. The Bayesian model averaging has received much attention as a tool of probabilistic forecasting due to its simplicity and superior prediction. In this paper, we propose a new Bayesian model averaging method for probabilistic ensemble forecasting. The proposed method combines a deterministic ensemble forecast based on a multivariate regression approach with Bayesian model averaging. We demonstrate that the proposed method is better in prediction than the standard Bayesian model averaging approach by analyzing monthly average precipitations and temperatures for ten cities in Korea.

A Bayesian Analysis of the Multinomial Randomized Response Model Using Dirichlet Prior Distribution

  • Kim, Jong-Min;Heo, Tae-Young
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.239-244
    • /
    • 2005
  • In this paper, we examine the problem of estimating the sensitive characteristics and behaviors in a multinomial randomized response (RR) model. We analyze this problem through a Bayesian perspective and develop a Bayesian multinomial RR model in survey study. The Bayesian inference of multinomial RR model is a new approach to RR models.

  • PDF

Optimal Multi-Model Ensemble Model Development Using Hierarchical Bayesian Model Based (Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축)

  • Kwon, Hyun-Han;Min, Young-Mi;Hameed, Saji N.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1147-1151
    • /
    • 2009
  • In this study, we address the problem of producing probability forecasts of summer seasonal rainfall, on the basis of Hindcast experiments from a ensemble of GCMs(cwb, gcps, gdaps, metri, msc_gem, msc_gm2, msc_gm3, msc_sef and ncep). An advanced Hierarchical Bayesian weighting scheme is developed and used to combine nine GCMs seasonal hindcast ensembles. Hindcast period is 23 years from 1981 to 2003. The simplest approach for combining GCM forecasts is to weight each model equally, and this approach is referred to as pooled ensemble. This study proposes a more complex approach which weights the models spatially and seasonally based on past model performance for rainfall. The Bayesian approach to multi-model combination of GCMs determines the relative weights of each GCM with climatology as the prior. The weights are chosen to maximize the likelihood score of the posterior probabilities. The individual GCM ensembles, simple poolings of three and six models, and the optimally combined multimodel ensemble are compared.

  • PDF

Bayesian Typhoon Track Prediction Using Wind Vector Data

  • Han, Minkyu;Lee, Jaeyong
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.241-253
    • /
    • 2015
  • In this paper we predict the track of typhoons using a Bayesian principal component regression model based on wind field data. Data is obtained at each time point and we applied the Bayesian principal component regression model to conduct the track prediction based on the time point. Based on regression model, we applied to variable selection prior and two kinds of prior distribution; normal and Laplace distribution. We show prediction results based on Bayesian Model Averaging (BMA) estimator and Median Probability Model (MPM) estimator. We analysis 8 typhoons in 2006 using data obtained from previous 6 years (2000-2005). We compare our prediction results with a moving-nest typhoon model (MTM) proposed by the Korea Meteorological Administration. We posit that is possible to predict the track of a typhoon accurately using only a statistical model and without a dynamical model.

Bayesian Model for Probabilistic Unsupervised Learning (확률적 자율 학습을 위한 베이지안 모델)

  • 최준혁;김중배;김대수;임기욱
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.849-854
    • /
    • 2001
  • GTM(Generative Topographic Mapping) model is a probabilistic version of the SOM(Self Organizing Maps) which was proposed by T. Kohonen. The GTM is modelled by latent or hidden variables of probability distribution of data. It is a unique characteristic not implemented in SOM model, and, therefore, it is possible with GTM to analyze data accurately, thereby overcoming the limits of SOM. In the present investigation we proposed a BGTM(Bayesian GTM) combined with Bayesian learning and GTM model that has a small mis-classification ratio. By combining fast calculation ability and probabilistic distribution of data of GTM with correct reasoning based on Bayesian model, the BGTM model provided improved results, compared with existing models.

  • PDF

Structural health monitoring of Canton Tower using Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.375-391
    • /
    • 2012
  • This paper reports the structural health monitoring benchmark study results for the Canton Tower using Bayesian methods. In this study, output-only modal identification and finite element model updating are considered using a given set of structural acceleration measurements and the corresponding ambient conditions of 24 hours. In the first stage, the Bayesian spectral density approach is used for output-only modal identification with the acceleration time histories as the excitation to the tower is unknown. The modal parameters and the associated uncertainty can be estimated through Bayesian inference. Uncertainty quantification is important for determination of statistically significant change of the modal parameters and for weighting assignment in the subsequent stage of model updating. In the second stage, a Bayesian model updating approach is utilized to update the finite element model of the tower. The uncertain stiffness parameters can be obtained by minimizing an objective function that is a weighted sum of the square of the differences (residuals) between the identified modal parameters and the corresponding values of the model. The weightings distinguish the contribution of different residuals with different uncertain levels. They are obtained using the Bayesian spectral density approach in the first stage. Again, uncertainty of the stiffness parameters can be quantified with Bayesian inference. Finally, this Bayesian framework is applied to the 24-hour field measurements to investigate the variation of the modal and stiffness parameters under changing ambient conditions. Results show that the Bayesian framework successfully achieves the goal of the first task of this benchmark study.

A study on the Bayesian nonparametric model for predicting group health claims

  • Muna Mauliza;Jimin Hong
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.323-336
    • /
    • 2024
  • The accurate forecasting of insurance claims is a critical component for insurers' risk management decisions. Hierarchical Bayesian parametric (BP) models can be used for health insurance claims forecasting, but they are unsatisfactory to describe the claims distribution. Therefore, Bayesian nonparametric (BNP) models can be a more suitable alternative to deal with the complex characteristics of the health insurance claims distribution, including heavy tails, skewness, and multimodality. In this study, we apply both a BP model and a BNP model to predict group health claims using simulated and real-world data for a private life insurer in Indonesia. The findings show that the BNP model outperforms the BP model in terms of claims prediction accuracy. Furthermore, our analysis highlights the flexibility and robustness of BNP models in handling diverse data structures in health insurance claims.