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Abstract

In this paper, we examine the problem of estimating the sensitive characteristics and behaviors
in a multinomial randomized response (RR) model. We analyze this problem through a Bayesian
perspective and develop a Bayesian multinomial RR model in survey study. The Bayesian inference

of multinomial RR model is a new approach to RR models.
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1 Introduction

The frequency of socially undesirable, embarrassing, or prohibited acts or attitudes is usually under-
estimated in surveys. A randomized response (RR) technique is a procedure for collecting the infor-
mation on sensitive characteristics without exposing the identity of the respondent. RR technique
was originally proposed by Warner (1965) as an alternative survey technique for socially undesirable
or incriminating behavior questions. With the many benefits of Dirichlet prior in Bayesian frame-
work, we propose a Bayesian multinomial approach to an extension of the binomial randomized

response model suggested by Kim, Tebbs and An (2005).
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2 Multinomial Randomized Response Model

Using the Hopkins randomized device, Kim and Warde (2005) propose a multinomial RR model
and derive estimators and their properties. We follow Kim and Warde’s (2005) multinomial model
set up which explicitly assumed a multinomial model for a single sensitive variable, denoted as A.
Suppose that there are two different colors of balls, red and green, in the device and that each
of the green balls contains a discrete number 1,2,...,k. All green balls represent a set of non-
sensitive categories, B = {By, By,..., B} and all the values of A are also included. We assume
that each of the ¢ individuals belongs to one of k mutually exclusive and exhaustive categories
T = {T1,T5,...,Tt}, consisting of sensitive categories, A = {A;, Az,..., Ax}, and non-sensitive
categories, B = {B1, Ba,..., B}, so that T; = A; + B; for 1,2,...,k. Let t; denote the random
quantity in a category T; so that n = Ele t;. The random quantities a; and b; are defined similarly,
so that a = Zle a; and b = ZLI b;, and t; = a; + b;. Our goal, then, is to estimate w1, 72, ..., Ts,
the proportions in the population associated with the sensitive categories, A = {Aj, Ao,..., A}
Based on the number of green balls in the device, py, = ¢;/g is the proportion of green balls with
number i for i = 1,2,...,k, where ¢; is the number of green balls that contain number %, and
g= ZLI g; ; that is, the quantities p;, are known in advance. For a tabular representation of our
multinomial situation, see Table 1. Let p,pt,,- .., D¢, denote the proportions in the pepulation
who are in categories T' = {T1, T, ..., Tk }. With n different interviewees using the Hopkins’ device,
b, the total number of people who are in the non-sensitive categories, B = { By, Bg,..., B}, is a
random quantity with expected value E[b] = ng/(r + g), where r denotes the number of red balls
in the device. As b, b, ..., bk are also random quantities with expected value E{b;] = ng;/(r + g),

it follows that by, = b — (by + ba + - -+ + bx—1) . We assume the distributions of T', A, and B are as

follows:
Tl' k t

T ={,Ts,...,Tk—1} ~ Multinomial(n, ps;, Pty - . -y Pty_,) = = Hpt:’

i=1 % =1

k
. . al a;
A= {4, As,...,Ax_1} ~ Multinomial(a, 71, 72,...,Tk_1) = = H7ri ,

i=1%i =1

k
L bl .
B ={B,By,...,Bx-1} ~ Multinomial(b, py, , Db, - - - , Pby._,) = TF 7 lel::’
1

i=1 Y j=1
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Suppose that T' = A+ B is fixed and that respondents give truthful answers to both the sensitive

and non-sensitive questions. Then, for random quantities a and b, we derive m; as follows:

_ (T +g)pt.’ —q;
T ]
T

where py; = t;/n.

If a random sample of size n is drawn, and n; is the number of respondents answering ”i”, let

Dy = ni/n denote the proportion of respondents answering ”i”. If Ty, denotes the estimates of =,
it follows that
~ T+ g)Pt; — Gi
7 ; — ( +g)pt1 ql' (1)
T

3 Bayesian Multinomial Randomized Response Model

Suppose that in each of k categories, individuals are independently classified into one of T} (i =
., k) categories. Therefore T' = (T1,...,7Tk) has a multinomial distribution with parameters n
and p¢ = (p¢,, . .., Pt ). So it follows that based on the observed values £ = (¢, ..., t), the likelihood

function of T given that p; = (py,,...,pt,) is

Hp,

i=1 1 i=1

frip (P =

where py; € Orgq, = (735, T%). Based on py, = “5E% in Section 2, we can derive the likelihood

function of T given that # = (m,...,7k) as follows:

k ti
7 - a4
tn,r, T i s
frn(tn,r, 9,4, %) 1—[1<T+g L5 r+g)
where 0 < m; < 1 and § = (q1,-..,qk)-

If m and F?f_g are nonnegative real numbers satisfying 0 < -r—+qg- <1, then

k
T+ g q; T+ q;

= — — < < ad =1.
Ph= " ryg SRS Z Pu

and therefore x

m= TP e tand o= 1
r i=1
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Thus, the parameter space, which is related to p;, can be written as

(% T+Qi)
r+g'r+g

g% = C (0,1).

Hence, proper conjugate prior for ¢ = (pt,,...,pt. ) is a truncated Dirichlet distribution, de-

noted by Dirichlet;(a;, ..., o), with density

frEla) = 'Fl(:’)H o1, @
’ i=1

where a; > 0 for i = 1,...,k, p;, € Or g4, and [ is the gamma distribution.. By the linear

transformation of p;, = %ﬁ, a prior density for # = (my1,...,7) is is a modified truncated
Dirichlet distribution, denoted by Dirichlete(a, ..., ax), with density
k-1 k k a;—1
. ~ T F(E =1 Qi) r a4
n(wla,r,g9,q) = T+ , 3
(A1, ,9,) (r+g) e et 715 (3

where o; > 0 for i = 1,...,k, and m; € (0,1).

Hence, the posterior distribution of T' and P, is as follows:

7 ol nl 1 _
fP:,T(trpt[a) = (E’ 1 " Hpt i+tai—-1 ()
( ; t)( N ) =
i=1" i=1 i) ) i=
for pt; € ©;,g,4:, and the marginal distribution of T is given by
- - n'F ;c_ oy i T t; 4+ o
frtn,a&) = (i @) H 1 Tt i) . )

( i1 ti)(nfﬂ F(ai)) (i (b + )

The conditional distribution of P; given T is

g - (E:k 1(ti + o)) itai=1

t,a,n) = = i 6
frr (Bl ) T+ ) L | | (6)
which means that P;|T has a Dirichlety () + a1, ..., + o).

Similarly, the posterior distribution of T" and II is as follows:

fH,T(f,ﬁln’r’g,@&) = leH(tlnar’91(I17r)fo(7rla ™g q

-1 i tita;—1
n'F(Z 1az H ) q; (7)
e \rs) I
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for 0 < m; < 1, and the marginal distribution of T is given by
nll(CE | ) kTl +a)
5 .
( f:l ti) ( - P(ai)) P im ti + i)

The conditional distribution of II given T is

fT(£'n7T1 9,4, C.lf) (8)

k

DSt + 1)) e
=i & = r i=1lti T Qi T Qi
|t &, n, 1, g, = — T + , (9
Fur (#] 9:9) (r+g) KT+ a) E(r+g Yl ) ®)

which means that II|T has a Dirichlets(t; + ai,. .., tx + az).
Since P:T has a Dirichlet; (¢; + au,...,tx + o), its marginal has a Beta density function as
follows:

k
I'( ki=1(ti + ;)) plite=1(1 _ p y(Dhaa(tbas)~(ttai)-1),
Pt + )T (8 + ) — (i +ai))

fori=1,...,k. For the remainder of this section, and for all comparisons in Section 5, only squared-

fPt‘. |T(pt.' |£1 &, n) =

error loss is considered; i.e., L(py;,a) = (ps, — a)?, so that the Bayes estimate of p;, is the mean of

the posterior fpt.lT(ptilf, @,n). A simple closed-form expression for p;p,, the mean of the posterior,

is given by
R Beta(t; 4+ a; + 1, 5 (& + o;) — ( + o)
Pip, = Elp,IT] = Chi — =7 i+ o)) (10)
Beta(ti + ai, 2j=1(tj +a;) — (ti + ozi))
where
1
- - [(a)T'(8)
Beta(a, =/ %71 — )P ldp = =22
(@8)= | =" -2 tae = 522D
Since we know n = Z?=1 t; and denote f3; = (E;;l a;) — aj, (10) reduces to
Beta(t; i+ 1,n—1t; i
Fip, = eta(ti + i+ 1,n — t; + 3;) 1)

Beta(ti + a;,n —t; + f;)
The classical estimator, MLE, derived in Section 2, can be obtained from the Bayes estimator (11)
by choosing different values of o and 8. If a1 = a3 = --- = a; = 0, then the Bayes estimator

corresponds to the MLE. Finally, we obtain the estimate of np, as follows

- (r+ g)bip, — g
7o, = Blpyir) = L1028

and the variance of 7', is given by

r+g)2 y [Beta(t,-+a,-+2,n—t,-+ﬂ,~) B (Beta(ti+ai+1,n—ti+,@i))2]

V(e =
(7B.) ( r Beta(t; + ai,n — t; + ;) Beta(t; + ai,n — t; + B;)
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4 Aplication

Using this Bayesian framework, we implement an MCMC method to sample from the full conditional
distribution of all these pafameters. For squared-error loss and absolute-error loss, WinBUGS provides
two Bayes estimates that are the mean and median of the posterior distribution, respectively. We
have used four different Dirichlet priors for the sensitive characteristic parameters of the multinomial
RR model. Results are based on three chains of 27,000 iterations, each after a burn-in period of
3,000 iterations. Figure 1 denotes the plots of kernel estimates of the marginal posterior density of

m; based on posterior samples using non-information prior, Dirichlet (1,1,1).
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Figure 1: Posterior density of parameters using non-informative Dirichlet prior, Dirichlet (1,1,1)
(w g, :Dotted arrow, mpy,: Solid arrow): Case 1 (top row), Case 2 (second row), Case I* (third row),
Case 2* (last row)
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