• Title/Summary/Keyword: Bayesian MCMC Method

Search Result 80, Processing Time 0.025 seconds

At-site Low Flow Frequency Analysis Using Bayesian MCMC: II. Application and Comparative Studies (Bayesian MCMC를 이용한 저수량 점 빈도분석: II. 적용과 비교분석)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.49-63
    • /
    • 2008
  • The Bayesian MCMC(Bayesian Markov Chain Monte Carlo) and the MLE(Maximum Likelihood Estimation) methods using a quadratic approximation are applied to perform the at-site low flow frequency analysis at the 4 stage stations (Nakdong, Waegwan, Goryeonggyo, and Jindong). Using the results of two types of the estimation method, the frequency curves including uncertainty are plotted. Eight case studies using the synthetic flow data with a sample size of 100, generated from 2-parmeter Weibull distribution are performed to compare with the results of analysis using the MLE and the Bayesian MCMC. The Bayesian MCMC and the MLE are applied to 36 years of gauged data to validate the efficiency of the developed scheme. These examples illustrate the advantages of the Bayesian MCMC and the limitations of the MLE based on a quadratic approximation. From the point of view of uncertainty analysis, the Bayesian MCMC is more effective than the MLE using a quadratic approximation when the sample size is small. In particular, the Bayesian MCMC is a more attractive method than MLE based on a quadratic approximation because the sample size of low flow at the site of interest is mostly not enough to perform the low flow frequency analysis.

At-site Low Flow Frequency Analysis Using Bayesian MCMC: I. Theoretical Background and Construction of Prior Distribution (Bayesian MCMC를 이용한 저수량 점 빈도분석: I. 이론적 배경과 사전분포의 구축)

  • Kim, Sang-Ug;Lee, Kil-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.35-47
    • /
    • 2008
  • The low flow analysis is an important part in water resources engineering. Also, the results of low flow frequency analysis can be used for design of reservoir storage, water supply planning and design, waste-load allocation, and maintenance of quantity and quality of water for irrigation and wild life conservation. Especially, for identification of the uncertainty in frequency analysis, the Bayesian approach is applied and compared with conventional methodologies in at-site low flow frequency analysis. In the first manuscript, the theoretical background for the Bayesian MCMC (Bayesian Markov Chain Monte Carlo) method and Metropolis-Hasting algorithm are studied. Two types of the prior distribution, a non-data- based and a data-based prior distributions are developed and compared to perform the Bayesian MCMC method. It can be suggested that the results of a data-based prior distribution is more effective than those of a non-data-based prior distribution. The acceptance rate of the algorithm is computed to assess the effectiveness of the developed algorithm. In the second manuscript, the Bayesian MCMC method using a data-based prior distribution and MLE(Maximum Likelihood Estimation) using a quadratic approximation are performed for the at-site low flow frequency analysis.

On the Bayesian Statistical Inference (베이지안 통계 추론)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.263-266
    • /
    • 2007
  • This paper discusses the Bayesian statistical inference. This paper discusses the Bayesian inference, MCMC (Markov Chain Monte Carlo) integration, MCMC method, Metropolis-Hastings algorithm, Gibbs sampling, Maximum likelihood estimation, Expectation Maximization algorithm, missing data processing, and BMA (Bayesian Model Averaging). The Bayesian statistical inference is used to process a large amount of data in the areas of biology, medicine, bioengineering, science and engineering, and general data analysis and processing, and provides the important method to draw the optimal inference result. Lastly, this paper discusses the method of principal component analysis. The PCA method is also used for data analysis and inference.

  • PDF

Bayesian Detection of Multiple Change Points in a Piecewise Linear Function (구분적 선형함수에서의 베이지안 변화점 추출)

  • Kim, Joungyoun
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.589-603
    • /
    • 2014
  • When consecutive data follows different distributions(depending on the time interval) change-point detection infers where the changes occur first and then finds further inferences for each sub-interval. In this paper, we investigate the Bayesian detection of multiple change points. Utilizing the reversible jump MCMC, we can explore parameter spaces with unknown dimensions. In particular, we consider a model where the signal is a piecewise linear function. For the Bayesian inference, we propose a new Bayesian structure and build our own MCMC algorithm. Through the simulation study and the real data analysis, we verified the performance of our method.

Bayesian Estimation for Skew Normal Distributions Using Data Augmentation

  • Kim Hea-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.323-333
    • /
    • 2005
  • In this paper, we develop a MCMC method for estimating the skew normal distributions. The method utilizing the data augmentation technique gives a simple way of inferring the distribution where fully parametric frequentist approaches are not available for small to moderate sample cases. Necessary theories involved in the method and computation are provided. Two numerical examples are given to demonstrate the performance of the method.

Geostatistics for Bayesian interpretation of geophysical data

  • Oh Seokhoon;Lee Duk Kee;Yang Junmo;Youn Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.340-343
    • /
    • 2003
  • This study presents a practical procedure for the Bayesian inversion of geophysical data by Markov chain Monte Carlo (MCMC) sampling and geostatistics. We have applied geostatistical techniques for the acquisition of prior model information, and then the MCMC method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter. This approach provides an effective way to treat Bayesian inversion of geophysical data and reduce the non-uniqueness by incorporating various prior information.

  • PDF

Bayesian Analysis in Generalized Log-Gamma Censored Regression Model

  • Younshik chung;Yoomi Kang
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.733-742
    • /
    • 1998
  • For industrial and medical lifetime data, the generalized log-gamma regression model is considered. Then the Bayesian analysis for the generalized log-gamma regression with censored data are explained and following the data augmentation (Tanner and Wang; 1987), the censored data is replaced by simulated data. To overcome the complicated Bayesian computation, Makov Chain Monte Carlo (MCMC) method is employed. Then some modified algorithms are proposed to implement MCMC. Finally, one example is presented.

  • PDF

Bayesian Parameter Estimation for Prognosis of Crack Growth under Variable Amplitude Loading (변동진폭하중 하에서 균열성장예지를 위한 베이지안 모델변수 추정법)

  • Leem, Sang-Hyuck;An, Da-Wn;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1299-1306
    • /
    • 2011
  • In this study, crack-growth model parameters subjected to variable amplitude loading are estimated in the form of a probability distribution using the method of Bayesian parameter estimation. Huang's model is employed to describe the retardation and acceleration of the crack growth during the loadings. The Markov Chain Monte Carlo (MCMC) method is used to obtain samples of the parameters following the probability distribution. As the conventional MCMC method often fails to converge to the equilibrium distribution because of the increased complexity of the model under variable amplitude loading, an improved MCMC method is introduced to overcome this shortcoming, in which a marginal (PDF) is employed as a proposal density function. The model parameters are estimated on the basis of the data from several test specimens subjected to constant amplitude loading. The prediction is then made under variable amplitude loading for the same specimen, and validated by the ground-truth data using the estimated parameters.

Analyze the parameter uncertainty of SURR model using Bayesian Markov Chain Monte Carlo method with informal likelihood functions

  • Duyen, Nguyen Thi;Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.127-127
    • /
    • 2021
  • In order to estimate parameter uncertainty of hydrological models, the consideration of the likelihood functions which provide reliable parameters of model is necessary. In this study, the Bayesian Markov Chain Monte Carlo (MCMC) method with informal likelihood functions is used to analyze the uncertainty of parameters of the SURR model for estimating the hourly streamflow of Gunnam station of Imjin basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of parameters. Moreover, the performance of four informal likelihood functions (Nash-Sutcliffe efficiency, Normalized absolute error, Index of agreement, and Chiew-McMahon efficiency) on uncertainty of parameter is assessed. The indicators used to assess the uncertainty of the streamflow simulation were P-factor (percentage of observed streamflow included in the uncertainty interval) and R-factor (the average width of the uncertainty interval). The results showed that the sensitivities of parameters strongly depend on the likelihood functions and vary for different likelihood functions. The uncertainty bounds illustrated the slight differences from various likelihood functions. This study confirms the importance of the likelihood function selection in the application of Bayesian MCMC to the uncertainty assessment of the SURR model.

  • PDF

Effects of ILFs on DRAM algorithm in SURR model uncertainty evaluation caused by interpolated rainfall using different methods

  • Nguyen, Thi Duyen;Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.137-137
    • /
    • 2022
  • Evaluating interpolated rainfall uncertainty of hydrological models caused by different interpolation methods for basins where can not fully collect rainfall data are necessary. In this study, the adaptive MCMC method under effects of ILFs was used to analyze the interpolated rainfall uncertainty of the SURR model for Gunnam basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of unknown parameters. In this work, the performance of four ILFs on uncertainty of interpolated rainfall was assessed. The indicators of p_factor (percentage of observed streamflow included in the uncertainty interval) and r_factor (the average width of the uncertainty interval) were used to evaluate the uncertainty of the simulated streamflow. The results showed that the uncertainty bounds illustrated the slight differences from various ILFs. The study confirmed the importance of the likelihood function selection in the application the adaptive Bayesian MCMC method to the uncertainty assessment of the SURR model caused by interpolated rainfall.

  • PDF