DOI QR코드

DOI QR Code

Bayesian Estimation for Skew Normal Distributions Using Data Augmentation

  • Kim Hea-Jung (Department of Statistics, Dongguk University)
  • Published : 2005.08.01

Abstract

In this paper, we develop a MCMC method for estimating the skew normal distributions. The method utilizing the data augmentation technique gives a simple way of inferring the distribution where fully parametric frequentist approaches are not available for small to moderate sample cases. Necessary theories involved in the method and computation are provided. Two numerical examples are given to demonstrate the performance of the method.

Keywords

References

  1. Arnold, B. C., Beaver, R. J., Groeneveld, R. A., and Meeker, W. Q.(1993). The nontruncated marginal of a truncated bivariate normal distribution, Psychometrica, 58, 471-478 https://doi.org/10.1007/BF02294652
  2. Azzalini, A.(1985). A class of distributions which includes the normal one Scandinavian Journal of Statistics, 12, 171-178 https://doi.org/10.1080/02664768500000022
  3. Azzalini, A.(1986). Further results on a class of distributions which includes the normal ones, Statistica, 46, 199-208
  4. Azzalini, A. and Capitanio, A.(1999). Statistical applications of the multivariate skew normal distribution, Journal of the Royal Statistical Society, B, 61, 579-602 https://doi.org/10.1111/1467-9868.00194
  5. Azzalini, A. and Dalla Valle, A.(1996). The multivariate skew-normal distribution, Biometrika, 83, 715-726 https://doi.org/10.1093/biomet/83.4.715
  6. Branco, M. D.(2001). A general class of multivariate skew-elliptical distributions, Journal of Multivariate Analysis, 79, 99-113 https://doi.org/10.1006/jmva.2000.1960
  7. Chen, M. H., Dey, D. K.,and Shao, Q. M.(1999). A new skewed link model for dichotomous quantal response data, Journal of the American Statistical Association, 94, 1172-1185 https://doi.org/10.2307/2669933
  8. Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981). An adoptive nonlinear least-squares algorithm. ACM Transactions on Mathematical Software, 7, 348-384 https://doi.org/10.1145/355958.355965
  9. Devroye, L.(1986). Non-Uniform Random Variate Generation, New York: Springer Verlag
  10. Gelfand, A. E. and Smith, A. F. M.(1990). Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398-409. parameter https://doi.org/10.2307/2289776
  11. Gelfand, A. E., Smith, A. F. M., and Lee, T. M. (1992). Bayesian analysis of constrained and truncated data problems using Gibbs sampling, Journal of the American Statistical Association, 87, 523-532 https://doi.org/10.2307/2290286
  12. Geman, S. and Geman, D.(1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 721-741 https://doi.org/10.1109/TPAMI.1984.4767596
  13. Henze, N.(1986). A probabilistic representation of the skew-normal distribution, Scandinavian Journal of Statistics, 13, 271-275
  14. Kim, H. J.(2002). Binary regression with a class of skewed t link models, Communications in Statistics- Theory and Methods, 1863-1886
  15. Lee. P. M. (1997). Bayesian Statistics, 2nd ed. New York: John Wiley
  16. Robert, G. O., Gelman, A., and Gilks, W. R.(1997). Weak convergence and optimal scaling of random walk Metropolis algorithm, Annals of Applied Probability, 7, 110-120 https://doi.org/10.1214/aoap/1034625254