• Title/Summary/Keyword: Bayesian Hierarchical Model

Search Result 129, Processing Time 0.018 seconds

Statistical Method for Implementing the Experimenter Effect in the Analysis of Gene Expression Data

  • Kim, In-Young;Rha, Sun-Young;Kim, Byung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.701-718
    • /
    • 2006
  • In cancer microarray experiments, the experimenter or patient which is nested in each experimenter often shows quite heterogeneous error variability, which should be estimated for identifying a source of variation. Our study describes a Bayesian method which utilizes clinical information for identifying a set of DE genes for the class of subtypes as well as assesses and examines the experimenter effect and patient effect which is nested in each experimenter as a source of variation. We propose a Bayesian multilevel mixed effect model based on analysis of covariance (ANACOVA). The Bayesian multilevel mixed effect model is a combination of the multilevel mixed effect model and the Bayesian hierarchical model, which provides a flexible way of defining a suitable correlation structure among genes.

Bayesian Hierarchical Model with Skewed Elliptical Distribution

  • Chung Younshik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.5-12
    • /
    • 2000
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution and it is shown to be useful in such Bayesian meta-analysis. A general class of skewed elliptical distribution is reviewed and developed. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierarchical selection model and use Markov chain Monte Carlo methods to develop inference for the parameters of interest.

  • PDF

Assessment of Effects of Predictors on the Corporate Bankruptcy Using Hierarchical Bayesian Dynamic Model

  • Sung Min-Je;Cho Sung-Bin
    • Management Science and Financial Engineering
    • /
    • v.12 no.1
    • /
    • pp.65-77
    • /
    • 2006
  • This study proposes a Bayesian dynamic model in a hierarchical way to assess the time-varying effect of risk factors on the likelihood of corporate bankruptcy. For the longitudinal data, we aim to describe dynamically evolving effects of covariates more articulately compared to the Generalized Estimating Equation approach. In the analysis, it is shown that the proposed model outperforms in terms of sensitivity and specificity. Besides, the usefulness of this study can be found from the flexibility in describing the dependence structure among time specific parameters and suitability for assessing the time effect of risk factors.

Hierarchical Bayes Analysis of Smoking and Lung Cancer Data

  • Oh, Man-Suk;Park, Hyun-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.115-128
    • /
    • 2002
  • Hierarchical models are widely used for inference on correlated parameters as a compromise between underfitting and overfilling problems. In this paper, we take a Bayesian approach to analyzing hierarchical models and suggest a Markov chain Monte Carlo methods to get around computational difficulties in Bayesian analysis of the hierarchical models. We apply the method to a real data on smoking and lung cancer which are collected from cities in China.

Bayesian Analysis for Heat Effects on Mortality

  • Jo, Young-In;Lim, Youn-Hee;Kim, Ho;Lee, Jae-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.705-720
    • /
    • 2012
  • In this paper, we introduce a hierarchical Bayesian model to simultaneously estimate the thresholds of each 6 cities. It was noted in the literature there was a dramatic increases in the number of deaths if the mean temperature passes a certain value (that we call a threshold). We estimate the difference of mortality before and after the threshold. For the hierarchical Bayesian analysis, some proper prior distribution of parameters and hyper-parameters are assumed. By combining the Gibbs and Metropolis-Hastings algorithm, we constructed a Markov chain Monte Carlo algorithm and the posterior inference was based on the posterior sample. The analysis shows that the estimates of the threshold are located at $25^{\circ}C{\sim}29^{\circ}C$ and the mortality around the threshold changes from -1% to 2~13%.

Spatio-temporal models for generating a map of high resolution NO2 level

  • Yoon, Sanghoo;Kim, Mingyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.803-814
    • /
    • 2016
  • Recent times have seen an exponential increase in the amount of spatial data, which is in many cases associated with temporal data. Recent advances in computer technology and computation of hierarchical Bayesian models have enabled to analyze complex spatio-temporal data. Our work aims at modeling data of daily average nitrogen dioxide (NO2) levels obtained from 25 air monitoring sites in Seoul between 2003 and 2010. We considered an independent Gaussian process model and an auto-regressive model and carried out estimation within a hierarchical Bayesian framework with Markov chain Monte Carlo techniques. A Gaussian predictive process approximation has shown the better prediction performance rather than a Hierarchical auto-regressive model for the illustrative NO2 concentration levels at any unmonitored location.

Hierarchical Bayesian Analysis for Stress-Strength Model in Normal Case

  • Lee, In-Suk;Cho, Jang-Sik;Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.127-137
    • /
    • 2000
  • In this paper, we consider hierarchical Bayesian analysis for P(Y < X) using Gibbs sampler, where X and Y are independent normal distributions with unknown means and variances, respectively. Also numerical study using real data is provided.

  • PDF

Evaluations of Small Area Estimations with/without Spatial Terms (공간 통계 활용에 따른 소지역 추정법의 평가)

  • Shin, Key-Il;Choi, Bong-Ho;Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.229-244
    • /
    • 2007
  • Among the small area estimation methods, it has been known that hierarchical Bayesian(HB) approach is the most reasonable and effective method. However any model based approaches need good explanatory variables and finding them is the key role in the model based approach. As the lacking of explanatory variables, adopting the spatial terms in the model was introduced. Here in this paper, we evaluate the model based methods with/without spatial terms using the diagnostic methods which were introduced by Brown et al. (2001). And Economic Active Population Survey(2005) is used for data analysis.

A Development of Regional Frequency Model Based on Hierarchical Bayesian Model (계층적 Bayesian 모형 기반 지역빈도해석 모형 개발)

  • Kwon, Hyun-Han;Kim, Jin-Young;Kim, Oon-Ki;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.13-24
    • /
    • 2013
  • The main objective of this study was to develop a new regional frequency analysis model based on hierarchical Bayesian model that allows us to better estimate and quantify model parameters as well as their associated uncertainties. A Monte-carlo experiment procedure has been set up to verify the proposed regional frequency analysis. It was found that the proposed hierarchical Bayesian model based regional frequency analysis outperformed the existing L-moment based regional frequency analysis in terms of reducing biases associated with the model parameters. Especially, the bias is remarkably decreased with increasing return period. The proposed model was applied to six weather stations in Jeollabuk-do, and compared with the existing L-moment approach. This study also provided shrinkage process of the model parameters that is a typical behavior in hierarchical Bayes models. The results of case study show that the proposed model has the potential to obtain reliable estimates of the parameters and quantitatively provide their uncertainties.

Bayesian hierarchical model for the estimation of proper receiver operating characteristic curves using stochastic ordering

  • Jang, Eun Jin;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.205-216
    • /
    • 2019
  • Diagnostic tests in medical fields detect or diagnose a disease with results measured by continuous or discrete ordinal data. The performance of a diagnostic test is summarized using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). The diagnostic test is considered clinically useful if the outcomes in actually-positive cases are higher than actually-negative cases and the ROC curve is concave. In this study, we apply the stochastic ordering method in a Bayesian hierarchical model to estimate the proper ROC curve and AUC when the diagnostic test results are measured in discrete ordinal data. We compare the conventional binormal model and binormal model under stochastic ordering. The simulation results and real data analysis for breast cancer indicate that the binormal model under stochastic ordering can be used to estimate the proper ROC curve with a small bias even though the sample sizes were small or the sample size of actually-negative cases varied from actually-positive cases. Therefore, it is appropriate to consider the binormal model under stochastic ordering in the presence of large differences for a sample size between actually-negative and actually-positive groups.