• Title/Summary/Keyword: Bayesian Design

Search Result 196, Processing Time 0.02 seconds

Reliable and Advanced Predictors for Corporate Financial Choices in Pakistan

  • SHAHZAD, Umeair;FUKAI, Luo;MAHMOOD, Faisal;JING, Liu;AHMED, Zahoor
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.7
    • /
    • pp.73-84
    • /
    • 2020
  • Existing studies disagree over the core predictors of firm-level financial choices in developing countries. The general practice only validates the traditional capital structure model, which leads to inconsistency and a lack of novelty. This study removed overfitting issues among existing factors and presented the most reliable and advanced capital structure model in Pakistani firms. The panel data include 368 Pakistani companies from 19 non-financial sectors over the period 2004 to 2017. We apply Akaike and Bayesian Information Criteria to remove overfitting issues among inconsistent proxies in the capital structure model. The fixed effects regression is used for basic results and the Generalized Method of Moments is applied to control the endogeneity. Besides the conventional proxies, we report that credit rating, distance from bankruptcy, managerial concentration, and institutional quality are the most advanced capital structure determinants in Pakistan. These predictors remain significant across firm size and growth levels. Also, the findings confirm that new predictors are reliable to define capital structure dynamics and improve the speed of adjustment in overall and sub-sample analysis. The major findings suggest that managers and policymakers should consider these advanced predictors to design their financial settings in firms.

Wireless sensor network design for large-scale infrastructures health monitoring with optimal information-lifespan tradeoff

  • Xiao-Han, Hao;Sin-Chi, Kuok;Ka-Veng, Yuen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.583-599
    • /
    • 2022
  • In this paper, a multi-objective wireless sensor network configuration optimization method is proposed. The proposed method aims to determine the optimal information and lifespan wireless sensor network for structural health monitoring of large-scale infrastructures. In particular, cluster-based wireless sensor networks with multi-type of sensors are considered. To optimize the lifetime of the wireless sensor network, a cluster-based network optimization algorithm that optimizes the arrangement of cluster heads and base station is developed. On the other hand, based on the Bayesian inference, the uncertainty of the estimated parameters can be quantified. The coefficient of variance of the estimated parameters can be obtained, which is utilized as a holistic measure to evaluate the estimation accuracy of sensor configurations with multi-type of sensors. The proposed method provides the optimal wireless sensor network configuration that satisfies the required estimation accuracy with the longest lifetime. The proposed method is illustrated by designing the optimal wireless sensor network configuration of a cable-stayed bridge and a space truss.

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

Estimation of the Hydrological Design Frequency of Local Rivers Using Bayesian Inference and a Sensitivity Analysis of Evaluation Factors (평가인자 가중치에 대한 베이지안 추론과 민감도 분석을 통한 적정 하천설계빈도 결정)

  • Ryu, Jae Hee;Kim, Ji Eun;Lee, Jin-Young;Park, Kyung-Woon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.617-626
    • /
    • 2022
  • In Korea, annual precipitation and its variability have gradually increased since modern meteorological observations began, and the risk of disasters has also been increasing due to significant regional variations and recent abnormal climate conditions. Given that damage from storms and floods mainly occurs around rivers, it is crucial to determine the appropriate design frequency for river-related projects. This study examined existing design practices used to determine hydrological design frequencies and suggested a new method to determine appropriate design frequencies. The study collected available data pertaining to seven evaluation factors, specifically the basin areas, shape parameters, channel slopes, stream orders, backwater effect reaches, extreme rainfall frequencies, and urbanized flood inundation areasfor 413 local rivers in Chungcheongnam-do in Korea. The estimated weights for areas of extreme rainfall frequencies and urbanized flood inundation were found to be 18, having a great effect on determining the design frequency. Compared with the established design frequency in previous government reports, the estimated design frequency increased for 255 rivers and decreased for 158 rivers.

Modal teat/analysis result correlation of folding fin (접는 날개에 대한 모드시험/해석결과 보정)

  • 양해석
    • Journal of KSNVE
    • /
    • v.6 no.3
    • /
    • pp.305-315
    • /
    • 1996
  • Present paper aims at the correlation of modal characteristics of folding fin between test and analysis using an optimization theory. Folding fin is composed of a movable fin, a base fin, and many functional components related to the folding mechanism. Joint parts of folding fin in FEM are initially modeled as rigid elements resulting some difference between test and analysis in modal characteristics. Therefore, some equivalent springs representing joint parts are introduced to improve the FEM model. The springs were set as design variables, while the frequency difference between test and analysis was set as the object function. Bayesian procedure was ujsed for the minimization.

  • PDF

On the Bayes risk of a sequential design for estimating a mean difference

  • Sangbeak Ye;Kamel Rekab
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.427-440
    • /
    • 2024
  • The problem addressed is that of sequentially estimating the difference between the means of two populations with respect to the squared error loss, where each population distribution is a member of the one-parameter exponential family. A Bayesian approach is adopted in which the population means are estimated by the posterior means at each stage of the sampling process and the prior distributions are not specified but have twice continuously differentiable density functions. The main result determines an asymptotic second-order lower bound, as t → ∞, for the Bayes risk of a sequential procedure that takes M observations from the first population and t - M from the second population, where M is determined according to a sequential design, and t denotes the total number of observations sampled from both populations.

An artificial intelligence-based design model for circular CFST stub columns under axial load

  • Ipek, Suleyman;Erdogan, Aysegul;Guneyisi, Esra Mete
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.119-139
    • /
    • 2022
  • This paper aims to use the artificial intelligence approach to develop a new model for predicting the ultimate axial strength of the circular concrete-filled steel tubular (CFST) stub columns. For this, the results of 314 experimentally tested circular CFST stub columns were employed in the generation of the design model. Since the influence of the column diameter, steel tube thickness, concrete compressive strength, steel tube yield strength, and column length on the ultimate axial strengths of columns were investigated in these experimental studies, here, in the development of the design model, these variables were taken into account as input parameters. The model was developed using the backpropagation algorithm named Bayesian Regularization. The accuracy, reliability, and consistency of the developed model were evaluated statistically, and also the design formulae given in the codes (EC4, ACI, AS, AIJ, and AISC) and the previous empirical formulations proposed by other researchers were used for the validation and comparison purposes. Based on this evaluation, it can be expressed that the developed design model has a strong and reliable prediction performance with a considerably high coefficient of determination (R-squared) value of 0.9994 and a low average percent error of 4.61. Besides, the sensitivity of the developed model was also monitored in terms of dimensional properties of columns and mechanical characteristics of materials. As a consequence, it can be stated that for the design of the ultimate axial capacity of the circular CFST stub columns, a novel artificial intelligence-based design model with a good and robust prediction performance was proposed herein.

Analysis of Changes in Rainfall Frequency Under Different Thresholds and Its Synoptic Pattern (절점기준에 따른 강우빈도 변화 및 종관기후학적 분석)

  • Kim, Tae-Jeong;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.791-803
    • /
    • 2016
  • Recently, frequency of extreme rainfall events in South Korea has been substantially increased due to the enhanced climate variability. Korea is prone to flooding due to being surrounded by mountains, along with high rainfall intensity during a short period. In the past three decades, an increase in the frequency of heavy rainfall events has been observed due to enhanced climate variability and climate change. This study aimed to analyze extreme rainfalls informed by their frequency of occurrences using a long-term rainfall data. In this respect, we developed a Poisson-Generalized Pareto Distribution (Poisson-GPD) based rainfall frequency method which allows us to simultaneously explore changes in the amount and exceedance probability of the extreme rainfall events defined by different thresholds. Additionally, this study utilized a Bayesian approach to better estimate both parameters and their uncertainties. We also investigated the synoptic patterns associated with the extreme events considered in this study. The results showed that the Poisson-GPD based design rainfalls were rather larger than those of based on the Gumbel distribution. It seems that the Poisson-GPD model offers a more reasonable explanation in the context of flood safety issue, by explicitly considering the changes in the frequency. Also, this study confirmed that low and high pressure system in the East China Sea and the central North Pacific, respectively, plays crucial roles in the development of the extreme rainfall in South Korea.

A literature review on RSM-based robust parameter design (RPD): Experimental design, estimation modeling, and optimization methods (반응표면법기반 강건파라미터설계에 대한 문헌연구: 실험설계, 추정 모형, 최적화 방법)

  • Le, Tuan-Ho;Shin, Sangmun
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.1
    • /
    • pp.39-74
    • /
    • 2018
  • Purpose: For more than 30 years, robust parameter design (RPD), which attempts to minimize the process bias (i.e., deviation between the mean and the target) and its variability simultaneously, has received consistent attention from researchers in academia and industry. Based on Taguchi's philosophy, a number of RPD methodologies have been developed to improve the quality of products and processes. The primary purpose of this paper is to review and discuss existing RPD methodologies in terms of the three sequential RPD procedures of experimental design, parameter estimation, and optimization. Methods: This literature study composes three review aspects including experimental design, estimation modeling, and optimization methods. Results: To analyze the benefits and weaknesses of conventional RPD methods and investigate the requirements of future research, we first analyze a variety of experimental formats associated with input control and noise factors, output responses and replication, and estimation approaches. Secondly, existing estimation methods are categorized according to their implementation of least-squares, maximum likelihood estimation, generalized linear models, Bayesian techniques, or the response surface methodology. Thirdly, optimization models for single and multiple responses problems are analyzed within their historical and functional framework. Conclusion: This study identifies the current RPD foundations and unresolved problems, including ample discussion of further directions of study.

Design of a User Location Prediction Algorithm Using the Flexible Window Scheme (Flexible Window 기법을 이용한 위치 예측 알고리즘 설계)

  • Son, Byoung-Hee;Kim, Yong-Hoon;Nahm, Eui-Seok;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.550-557
    • /
    • 2007
  • We predict a context of various structures by using Bayesian Networks Algorithms, Three-Dimensional Structures Algorithms and Genetic Algorithms. However, these algorithms have unavoidable problems when providing a context-aware service in reality due to a lack of practicality and the delay of process time in real-time environment. As far as context-aware system for specific purpose is concerned, it is very hard to be sure about the accuracy and reliability of prediction. This paper focuses on reasoning and prediction technology which provides a stochastic mechanism for context information by incorporating various context information data. The objective of this paper is to provide optimum services to users by suggesting an intellectual reasoning and prediction based on hierarchical context information. Thus, we propose a design of user location prediction algorithm using sequential matching with n-size flexible window scheme by taking user's habit or behavior into consideration. This algorithm improves average 5.10% than traditional algorithms in the accuracy and reliability of prediction using the Flexible Window Scheme.