• Title/Summary/Keyword: Bayesian Algorithm

Search Result 475, Processing Time 0.022 seconds

Accuracy evaluation of ZigBee's indoor localization algorithm (ZigBee 실내 위치 인식 알고리즘의 정확도 평가)

  • Noh, Angela Song-Ie;Lee, Woong-Jae
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper applies Bayesian Markov inferred localization techniques for determining ZigBee mobile device's position. To evaluate its accuracy, we compare it with conventional technique, map-based localization. While the map-based localization technique referring to database of predefined locations and their RSSI data, the Bayesian Markov inferred localization is influenced by changes of time, direction and distance. All determinations are drawn from the estimation of Received Signal Strength (RSS) using ZigBee modules. Our results show the relationship between RSSI and distance in indoor ZigBee environment and higher localization accuracy of Bayesian Markov localization technique. We conclude that map-based localization is not suitable for flexible changes in indoors because of its predefined condition setup and lower accuracy comparing to distance-based Markov Chain inference localization system.

Boundary Detection using Adaptive Bayesian Approach to Image Segmentation (적응적 베이즈 영상분할을 이용한 경계추출)

  • Kim Kee Tae;Choi Yoon Su;Kim Gi Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.303-309
    • /
    • 2004
  • In this paper, an adaptive Bayesian approach to image segmentation was developed for boundary detection. Both image intensities and texture information were used for obtaining better quality of the image segmentation by using the C programming language. Fuzzy c-mean clustering was applied fer the conditional probability density function, and Gibbs random field model was used for the prior probability density function. To simply test the algorithm, a synthetic image (256$\times$256) with a set of low gray values (50, 100, 150 and 200) was created and normalized between 0 and 1 n double precision. Results have been presented that demonstrate the effectiveness of the algorithm in segmenting the synthetic image, resulting in more than 99% accuracy when noise characteristics are correctly modeled. The algorithm was applied to the Antarctic mosaic that was generated using 1963 Declassified Intelligence Satellite Photographs. The accuracy of the resulting vector map was estimated about 300-m.

A Stability of P-persistent MAC Scheme for Periodic Safety Messages with a Bayesian Game Model (베이지안 게임모델을 적용한 P-persistent MAC 기반 주기적 안정 메시지 전송 방법)

  • Kwon, YongHo;Rhee, Byung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.543-552
    • /
    • 2013
  • For the safety messages in IEEE 802.11p/WAVE vehicles network environment, strict periodic beacon broadcasting requires status advertisement to assist the driver for safety. In crowded networks where beacon message are broadcasted at a high number of frequencies by many vehicles, which used for beacon sending, will be congested by the wireless medium due to the contention-window based IEEE 802.11p MAC. To resolve the congestion, we consider a MAC scheme based on slotted p-persistent CSMA as a simple non-cooperative Bayesian game which involves payoffs reflecting the attempt probability. Then, we derive Bayesian Nash Equilibrium (BNE) in a closed form. Using the BNE, we propose new congestion control algorithm to improve the performance of the beacon rate under saturation condition in IEEE 802.11p/WAVE vehicular networks. This algorithm explicitly computes packet delivery probability as a function of contention window (CW) size and number of vehicles. The proposed algorithm is validated against numerical simulation results to demonstrate its stability.

Bayesian logit models with auxiliary mixture sampling for analyzing diabetes diagnosis data (보조 혼합 샘플링을 이용한 베이지안 로지스틱 회귀모형 : 당뇨병 자료에 적용 및 분류에서의 성능 비교)

  • Rhee, Eun Hee;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.131-146
    • /
    • 2022
  • Logit models are commonly used to predicting and classifying categorical response variables. Most Bayesian approaches to logit models are implemented based on the Metropolis-Hastings algorithm. However, the algorithm has disadvantages of slow convergence and difficulty in ensuring adequacy for the proposal distribution. Therefore, we use auxiliary mixture sampler proposed by Frühwirth-Schnatter and Frühwirth (2007) to estimate logit models. This method introduces two sequences of auxiliary latent variables to make logit models satisfy normality and linearity. As a result, the method leads that logit model can be easily implemented by Gibbs sampling. We applied the proposed method to diabetes data from the Community Health Survey (2020) of the Korea Disease Control and Prevention Agency and compared performance with Metropolis-Hastings algorithm. In addition, we showed that the logit model using auxiliary mixture sampling has a great classification performance comparable to that of the machine learning models.

Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws (초음파 검사 기반의 용접결함 분류성능 개선에 관한 연구)

  • 김재열;윤성운;김창현;송경석;양동조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.287-292
    • /
    • 2004
  • In this study, we made a comparative study of backpropagation neural network and probabilistic neural network and bayesian classifier and perceptron as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to four algorithms. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we confirmed advantages/disadvantages of four algorithms and identified application methods of few algorithms.

  • PDF

Classification of Very High Concerns HRCT Images using Extended Bayesian Networks (확장 베이지안망을 적용한 고위험성 HRCT 영상 분류)

  • Lim, Chae-Gyun;Jung, Yong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.7-12
    • /
    • 2012
  • Recently the medical field to efficiently process the vast amounts of information to decision trees, neural networks, Bayesian Networks, including the application method of various data mining techniques are investigated. In addition, the basic personal information or patient history, family history, in addition to information such as MRI, HRCT images and additional information to collect and leverage in the diagnosis of disease, improved diagnostic accuracy is to promote a common status. But in real world situations that affect the results much because of the variable exists for a particular data mining techniques to obtain information through the enemy can be seen fairly limited. Medical images were taken as well as a minor can not give a positive impact on the diagnosis, but the proportion increased subjective judgments by the automated system is to deal with difficult issues. As a result of a complex reality, the situation is more advantageous to deal with the relative probability of the multivariate model based on Bayesian network, or TAN in the K2 search algorithm improves due to expansion model has been proposed. At this point, depending on the type of search algorithm applied significantly influenced the performance characteristics of the extended Bayesian network, the performance and suitability of each technique for evaluation of the facts is required. In this paper, we extend the Bayesian network for diagnosis of diseases using the same data were carried out, K2, TAN and changes in search algorithms such as classification accuracy was measured. In the 10-fold cross-validation experiment was performed to compare the performance evaluation based on the analysis and the onset of high-risk classification for patients with HRCT images could be possible to identify high-risk data.

Path Generation Method of UAV Autopilots Using Max-Min Algorithm

  • Kwak, Jeonghoon;Sung, Yunsick
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1457-1463
    • /
    • 2018
  • In recent times, Natural User Interface/Natural User Experience (NUI/NUX) technology has found widespread application across a diverse range of fields and is also utilized for controlling unmanned aerial vehicles (UAVs). Even if the user controls the UAV by utilizing the NUI/NUX technology, it is difficult for the user to easily control the UAV. The user needs an autopilot to easily control the UAV. The user needs a flight path to use the autopilot. The user sets the flight path based on the waypoints. UAVs normally fly straight from one waypoint to another. However, if flight between two waypoints is in a straight line, UAVs may collide with obstacles. In order to solve collision problems, flight records can be utilized to adjust the generated path taking the locations of the obstacles into consideration. This paper proposes a natural path generation method between waypoints based on flight records collected through UAVs flown by users. Bayesian probability is utilized to select paths most similar to the flight records to connect two waypoints. These paths are generated by selection of the center path corresponding to the highest Bayesian probability. While the K-means algorithm-based straight-line method generated paths that led to UAV collisions, the proposed method generates paths that allow UAVs to avoid obstacles.

Text Categorization Using TextRank Algorithm (TextRank 알고리즘을 이용한 문서 범주화)

  • Bae, Won-Sik;Cha, Jeong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.110-114
    • /
    • 2010
  • We describe a new method for text categorization using TextRank algorithm. Text categorization is a problem that over one pre-defined categories are assigned to a text document. TextRank algorithm is a graph-based ranking algorithm. If we consider that each word is a vertex, and co-occurrence of two adjacent words is a edge, we can get a graph from a document. After that, we find important words using TextRank algorithm from the graph and make feature which are pairs of words which are each important word and a word adjacent to the important word. We use classifiers: SVM, Na$\ddot{i}$ve Bayesian classifier, Maximum Entropy Model, and k-NN classifier. We use non-cross-posted version of 20 Newsgroups data set. In consequence, we had an improved performance in whole classifiers, and the result tells that is a possibility of TextRank algorithm in text categorization.

Air Threat Evaluation System using Fuzzy-Bayesian Network based on Information Fusion (정보 융합 기반 퍼지-베이지안 네트워크 공중 위협평가 방법)

  • Yun, Jongmin;Choi, Bomin;Han, Myung-Mook;Kim, Su-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.21-31
    • /
    • 2012
  • Threat Evaluation(TE) which has air intelligence attained by identifying friend or foe evaluates the target's threat degree, so it provides information to Weapon Assignment(WA) step. Most of TE data are passed by sensor measured values, but existing techniques(fuzzy, bayesian network, and so on) have many weaknesses that erroneous linkages and missing data may fall into confusion in decision making. Therefore we need to efficient Threat Evaluation system that can refine various sensor data's linkages and calculate reliable threat values under unpredictable war situations. In this paper, we suggest new threat evaluation system based on information fusion JDL model, and it is principle that combine fuzzy which is favorable to refine ambiguous relationships with bayesian network useful to inference battled situation having insufficient evidence and to use learning algorithm. Finally, the system's performance by getting threat evaluation on an air defense scenario is presented.

Bayesian Analysis of Dose-Effect Relationship of Cadmium for Benchmark Dose Evaluation (카드뮴 반응용량 곡선에서의 기준용량 평가를 위한 베이지안 분석연구)

  • Lee, Minjea;Choi, Taeryon;Kim, Jeongseon;Woo, Hae Dong
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.453-470
    • /
    • 2013
  • In this paper, we consider a Bayesian analysis of the dose-effect relationship of cadmium to evaluate a benchmark dose(BMD). For this purpose, two dose-response curves commonly used in the toxicity study are fitted based on Bayesian methods to the data collected from the scientific literature on cadmium toxicity. Specifically, Bayesian meta-analysis and hierarchical modeling build an overall dose-effect relationship that use a piecewise linear model and Hill model, where the inter-study heterogeneity and inter-individual variability of dose and effect such as gender, age and ethnicity are accounted. Estimation of the unknown parameters is made by using a Markov chain Monte Carlo algorithm based user-friendly software WinBUGS. Benchmark dose estimates are evaluated for various cut-offs and compared with different tested subpopulations with with gender, age and ethnicity based on these two Bayesian hierarchical models.