• 제목/요약/키워드: Bayesian 통계방법

검색결과 180건 처리시간 0.019초

베이지안분석을 이용한 철도건널목 Accident Modification Factors (AMF)에 관한 연구 (Analysis of Accident Modification Factors (AMF) for Roadway-Rail Grade Crossing Accidents with Baysian Method)

  • 오주택;최재원;박동주
    • 대한교통학회지
    • /
    • 제22권4호
    • /
    • pp.31-42
    • /
    • 2004
  • 본 논문에서는 철도건널목에서 일어나는 사고를 줄이기 위해 새롭게 시도되는 개선대안(Countermeasure)들의 안전성 및 효율성을 베이지안 분석방법론을 이용하여 안전전문가들의 평가결과를 정량화 시키는 방법론을 제시하였다. 이를 위해 전문가 개개인의 사전지식에 논리에 기초한 정보를 제공할 수 있는 개선대안 분석방법론을 개발하였다. 분석방법론은 우선적으로 철도건널목 안전성을 향상 시킬 수 있는 개선대안 선정, 개선대안을 평가 할 전문가 선정, 그리고 개선대안의 AMF를 평가하기 위한 건널목 사고를 선정하였다. 다음 단계로 안전전문가가 공학적인 개선대안 평가를 수행할 수 있도록 사고이력매뉴얼과 개선대안 평가매뉴얼을 개발하였다. 마지막 단계로, 평가된 개선대안의 통계적 검정을 통해 합리적 AMF를 추출함에 따른 정량화된 안전도를 나타내었다. 개선대안의 통계적 검정은 비모수통계분석의 일종인 Kolmogorov-Smirnov(K-S)동질성 검정을 적용하였으며, 그 결과 안전전문가 개인간의 분포는 동일한 분포를 나타내지 않는 경우가 많이 발생하였다. 반면 개인과 그룹의 분포는 대부분 동일한 분포를 하고 있는 것으로 나타났다. 따라서 철도건널목 개선대안의 AMF값은 전문가 개개인이 평가한 값을 전체적으로 평균한 값을 사용함이 타당한 것으로 연구되었다. 본 논문에서 보여주는 AMF의 정량화과정은 철도건널목에서 뿐만 아니라, 교차로 및 도로구간에서 추후 시도되고자 하는 개선대안들의 안전성 평가에도 사용 가능하리라 판단된다.

군집 특정 변량효과를 포함한 유한 혼합 모형의 베이지안 분석 (Bayesian analysis of finite mixture model with cluster-specific random effects)

  • 이혜진;경민정
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.57-68
    • /
    • 2017
  • 대량의 데이터에 있어 전반적인 특성 및 구조를 파악하는데 유용하기 때문에 다양한 분야에서 군집분석을 사용하고 있다. Dempster 등 (1977)에서 정의된 expectation-maximization(EM) 알고리즘은 가장 보편적으로 사용되는 군집분석 방법이다. 선형모형의 유한혼합물(finite mixture of linear model) 기법 또한 군집분석 방법 중 많이 사용되는 방법이며 베이지안 군집방법은 Bernardo와 Giron (1988)이 군집에 대한 가중치 확률만 모를 경우 처음 적용하였다. 우리는 이 연구에서 일반적인 선형모형의 유한혼합물이 아닌 군집특정(cluster-specific) 변량효과를 모형에 포함하여 베이지안 분석방법인 깁스표집법(Gibbs sampling)을 사용한다. 제안한 모형의 특성 및 표집법에 대하여 설명하였고 모의실험 및 실제 데이터 분석을 통하여 모형의 유용성을 파악하였다. Hurn 등 (2003)의 CO2 데이터에 모형을 적용하여 변량효과가 없는 모형, 개체특정(subject-specific) 변량효과 모형과 비교하였다.

신경회로망 제어기와 동적 베이시안 네트워크를 이용한 시변 및 비정치 확률시스템의 제어 (Control of Time-varying and Nonstationary Stochastic Systems using a Neural Network Controller and Dynamic Bayesian Network Modeling)

  • 조현철;이진우;이영진;이권순
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.930-938
    • /
    • 2007
  • 영상에 나타나는 자막은 영상과 관계가 있는 정보를 포함한다. 이러한 영상과 관련 있는 정보를 이용하기 위해 영상으로부터 자막을 추출하는 연구는 근래에 들어 활발히 진행되고 있다. 기존의 연구는 일정한 높이의 자막이나 획의 두께를 지닌 자막에서만 정상적인 작동을 한다. 본 논문에서는 일정 크기 이상의 자막에 대해서 적용할 수 있는 크기에 무관한 자막 추출 방법을 제안한다. 먼저, 자막 연결 객체의 패턴 추출을 위해서 자막이 포함된 영상을 수집하고, 신경망을 이용해서 자막의 패턴을 분석한다. 그 후로는 사전에 추출한 패턴을 이용하여 입력 영상에서 자막을 추출한다. 실험에 사용된 영상은 뉴스, 다큐멘터리, 쇼 프로그램과 같은 대중 방송에서 수집하였다. 실험 결과는 다양한 크기의 자막을 포함한 영상을 사용하여 실험하였고, 자막 추출의 결과는 찾아진 연결객체 중에 자막의 비율과 자막 중에 찾아진 자막의 비율로 분석하였다. 실험 결과를 보면 제안한 방법에 의해 다양한 크기의 자막을 추출할 수 있음을 보여준다.

한계와 이상치가 있는 결측치의 로버스트 다중대체 방법 (Robust multiple imputation method for missings with boundary and outliers)

  • 박유성;오도영;권태연
    • 응용통계연구
    • /
    • 제32권6호
    • /
    • pp.889-898
    • /
    • 2019
  • 항목 무응답(item missing)이 발생한 설문조사에서 결측이 포함된 변수에 이상치(outlier)의 존재와 다른 설문문항 항목과의 논리적 한계(boundary) 조건들이 유의미하다면 결측치 대체문제는 매우 복잡해진다. 한계가 있는 결측값들을 포함한 변수에 이상치가 존재하는 경우, 기존의 회귀분석에 근거한 결측치 대체방법은 편향된 대체값 그리고 한계를 만족하지 않은 대체값을 제시할 가능성이 있다. 이에 본 논문은 회귀모형에 기반을 두고 결측치들을 대체를 함에 있어 이상치와 논리적 한계조건이 자료에 존재하는 경우, 다양한 로버스트 회귀모형과 다중대체 방법의 조합을 통해 해결점을 모색하고자 한다. 이를 위해 이들 방법들의 최적의 조합을 다양한 시나리오별로 모의실험을 통하여 찾아보고 이에 대하여 논의하였다.

연관분석을 위한 베이지안 모형 선택: 상호상관성 변수를 중심으로 (Bayesian Model Selection for Linkage Analyses: Considering Collinear Predictors)

  • 서영주
    • 응용통계연구
    • /
    • 제18권3호
    • /
    • pp.533-541
    • /
    • 2005
  • 본 저자는 앞선 연구에서 제안한 SSVS 방법을 이용하여 한 양적형질에 대한 연관분석에 있어, QTL에 가까이 있는 관련된 표지유전자들의 위치를 정하고자 한다. 본 논문에서는 QTL에 연관되어 있고 동시에 서로 연관되어 있는 몇 가지 표지유전자들을 대상으로 하는데, 이 유전자 좌위들의 i.b.d. 값들을 상호 상관이 있는 예측변수로서 고려하여, SSVS 방법으로 분석한다. 두개의 QTL에 강하게 연관되어 있는 표지유전자들 만을 동시에 고려한 분석의 결과, QTL에 가장 가까이 위치한 표지 유전자가 다른 유전자들보다 더 분명하게 양적형질과의 관련성을 보여주었다. SSVS를 이용한 상호 상관이 있는 표지 유전자들의 분석의 결과는 전통적인 다중회귀분석을 이용한 결과와 거의 일치했다. 본 모의실험을 바탕으로, 복합 양적형질에 대하여 서로 연관된 다중의 표지유전자들을 동시에 연관분석을 수행하는 데에 SSVS 방법이 상당히 유용하다고 결론 내린다.

베이지안 이론을 이용한 타입강관말뚝의 신뢰성 평가 (Reliability Updates of Driven Piles Based on Bayesian Theory Using Proof Pile Load Test Results)

  • 박재현;김동욱;곽기석;정문경;김준영;정충기
    • 한국지반공학회논문집
    • /
    • 제26권7호
    • /
    • pp.161-170
    • /
    • 2010
  • 기초구조물의 저항계수 산정 및 하중저항계수설계법의 개발을 위해서는 충분한 양의 데이터베이스 구축을 바탕으로 정확한 신뢰성 분석이 수행되어야 한다. 기존 국내외 말뚝기초의 신뢰성 분석 연구에서는 말뚝의 측정지지력 확인이 가능한 재하시험 자료만을 이용하여 저항편향계수의 분포특성을 산정하였다. 따라서, 파괴에 이르지 않은 말뚝재하시험 자료는 신뢰성 분석에서 제외되었다. 본 연구에서는 베이지안 이론을 이용하여 타입강관말뚝 저항편향계수의 사전 분포특성에 측정지지력을 확인할 수 없는 재하시험 결과를 추가하여 현장 특성을 반영한 저항편향계수의 사후분포특성을 산정하였다. 그리고 저항편향계수의 사후분포특성을 이용하여 말뚝의 신뢰성 평가를 수행하고 신뢰도수준을 갱신하였다. 국내 전역에서 수행된 양질의 정재하시험 자료를 수집, 분석하여 57개의 자료에 대한 측정지지력을 확인하였고, 이들 자료에 대해서 구조물기초설계기준에서 제안하고 있는 Meyerhof 공식을 이용하여 설계지지력을 산정하였다. 이를 통해 저항편향계수의 사전분포 특성을 정량화 하였으며, 베이지안 기법을 적용하여 다양한 현장재하시험 결과에 따라 저항편향계수의 사후분포를 산정하였다. 갱신된 저항편향계수 통계특성을 적용하여 일차신뢰도법을 이용하여 강도 높은 신뢰성 해석을 수행하고 시험결과에 따른 신뢰도 수준을 평가하였다. 본 연구에서 제시된 방법을 통해 양질의 측정지지력 데이터가 부족한 경우 베이지안 기법을 이용하여 신뢰성 분석이 가능함을 확인하였다.

Bayes의 복합 의사결정모델을 이용한 다중에코 자기공명영상의 context-dependent 분류 (Context-Dependent Classification of Multi-Echo MRI Using Bayes Compound Decision Model)

  • 전준철;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • 제3권2호
    • /
    • pp.179-187
    • /
    • 1999
  • 목적 : 본 논문은 Bayes의 복합 의사결정모델을 이용한 효과적인 다중에코 자기공명영상의 분류방법을 소개한다. 동질성을 갖는 영역 혹은 경계선부위 등 영역을 명확히 분할하기 위하여 영상 내 국소 부위 이웃시스댐상의 주변정보(contextual information)를 이용한 분류 방법을 제시한다. 대상 및 방법 : 통계학적으로이질적 성분들로 구성된 영상을 대상으로 한 주변정보를 이용한 분류결과는 영상내의 국소적으로 정적인 영역들을이웃화소시스탬 내에서 정의되는 상호작용 인자의 메커니즘에 의해 분리함으로서 개선시킬 수 있다. 영상의 분류과정에서 분류결과의 정확도를 향상시키기 위하여 분류대상화소의 주변화소에 대한 분류패턴을 이용한다면 일반적으로 발생하는 분류의 모호성을 제거한다. 그러한 이유는 특정 화소와 인접한 주변의 데이터는 본질적으로 특정 화소와 상관관계를 내재하고 있으며, 만일 주변데이터의 특성을 파악할수 있다면, 대상화소의 성질을 결정하는데 도움을 얻을 수 있다. 본 논문에서는 분류 대상화소의 주변정보와 Bayes의 복합 의사결정모델을 이용한 context-dependent 분류 방법을 제시한다. 이 모델에서 주변 정보는 국소 부위 이웃시스댐으로부터 전이확률(tran­s sition probability)을 추출하여 화소간의 상관관계의 강도를 결정하는 상호인자 값으로 사용한다. 결과 : 본논문에서는 다중에코자기공명영상의 분류를 위하여 Bayes의 복합 의사결정모델을 이용한 분류방법을 제안하였다. 주변 데이터를 고려하지 않는 context-free 분류 방법에 비하여 특히 동질성을 강는 영역 혹은 경계선 부위 등에서의 분류결과가 우수하게 나타났으며, 이는 주변정보를이용한 결과이다. 결론 : 본 논문에서는클러스터링 분석과 복합 의사결정 Bayes 모델을 이용하여 다중에코 자기공명영상의 분류 결과를 향상시키기 위한 새로운 방법을 소개하였다.

  • PDF

영한 기계번역에서의 영어 품사결정 모델 (A Model of English Part-Of-Speech Determination for English-Korean Machine Translation)

  • 김성동;박성훈
    • 지능정보연구
    • /
    • 제15권3호
    • /
    • pp.53-65
    • /
    • 2009
  • 영한 기계번역에서 영어 단어의 품사결정은 번역할 문장에 사용된 어휘의 품사 모호성을 해소하기 위해 필요하다. 어휘의 품사 모호성은 구문 분석을 복잡하게 하고 정확한 번역을 생성하는 것을 어렵게 한다. 본 논문에서는 이러한 문제점을 해결하기 위해 어휘 분석 이후 구문 분석 이전에 품사 모호성을 해소하려 하였으며 품사 모호성을 해소하기 위한 CatAmRes 모델을 제안하고 다른 품사태깅 방법과 성능 비교를 하였다. CatAmRes는 Penn Treebank 말뭉치를 이용하여 Bayesian Network를 학습하여 얻은 확률 분포와 말뭉치에서 나타나는 통계 정보를 이용하여 영어 단어의 품사를 결정을 한다. 본 논문에서 제안한 영어 품사결정 모델 CatAmRes는 결정할 품사의 적정도 값을 계산하는 Calculator와 계산된 적정도 값에 근거하여 품사를 결정하는 POSDeterminer로 구성된다. 실험에서는 CatAmRes의 동작과 성능을 테스트 하기 위해 WSJ, Brown, IBM 영역의 말뭉치에서 추출한 테스트 데이터를 이용하여 품사결정의 정확도를 평가하였다.

  • PDF

NHPP 소프트웨어 신뢰도 모형에 대한 모수 추정 비교 (The Comparison of Parameter Estimation for Nonhomogeneous Poisson Process Software Reliability Model)

  • 김희철;이상식;송영재
    • 정보처리학회논문지D
    • /
    • 제11D권6호
    • /
    • pp.1269-1276
    • /
    • 2004
  • 본 논문에서는 기존의 소프트웨어 신뢰성 모형인 Goel-Okumoto 모형과 Yamada-Ohba-Osaki 모형을 재조명하고 또, 랄리 분포를 이용한 랄리 모형을 적용하여 모수 추정방법을 연구하였다. 본 연구에서는 기존의 최우추정법과 잠재변수를 도입하여 깁스 샘플링(Gibbs sampling)을 이용한 베이지안 모수추정 방법을 비교하고 그 특징을 분석하고자 한다. 또, 효율적 모형을 위한 모형선택으로서 잔차제곱합(Sum of the squared errors ; SSE)과 Braun 통계량을 적용하여 모형들에 대한 효율성 입증방법을 설명하였다. 그리고 수치적인 예로서 실제 자료를 이용한 수치 견과를 나열하였다. 이 접근방법을 기초로 하여 수명분포가 중첩(Superposition) 및 혼합(Mixture)인 경우에 대한 접근방법이 연구되었으면 한다.

GPS 프로브 차량 속도자료를 이용한 고속도로 사고 위험구간 추출기법 (Extraction of Hazardous Freeway Sections Using GPS-Based Probe Vehicle Speed Data)

  • 박재홍;오철;김태형;주신혜
    • 한국ITS학회 논문지
    • /
    • 제9권3호
    • /
    • pp.73-84
    • /
    • 2010
  • 본 연구에서는 고속도로에서 GPS(Global Positioning System)수신기를 장착한 프로브차량을 이용하여 수집한 속도자료를 이용하여 사고 위험구간을 추출하는 방법론을 제시하였다. 위험구간 추출을 사고발생 유 무를 판단하는 분류문제(Classification)로 정형화하고 베이지안 신경망을 적용하였다. 개별차량의 속도자료를 이용하여 다양한 잠재적 독립변수를 설정하고 이항 로지스틱 회귀분석을 이용하여 통계적으로 유의미한 변수만을 추출하여 베이지안 신경망의 입력자료로 사용하였다. 제안된 방법론의 성능 평가를 위해 사고 발생 경험이 있는 위험구간을 정확히 추출하는 분류정확도를 효과척도로 활용하였다. 본 연구에서 제안한 방법론의 타당성을 60%의 분류정확도를 통해 확인할 수 있었다. 고속도로 신설노선의 교통안전성을 평가하고 사고예방을 위한 대응책 개발 및 적용에 본 연구의 결과가 효과적으로 활용될 것으로 기대된다.