• 제목/요약/키워드: Bayesian 모형

검색결과 400건 처리시간 0.025초

외부기상인자를 고려한 낙동강유역 계절강수량 단기예측모형 (Seasonal rainfall short-term forecasting model considering climate indices)

  • 이정주;권현한;황규남;전시영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.401-401
    • /
    • 2011
  • 본 연구는 Bayesian MCMC(Markov Chain Monte Carlo)를 이용한 비정상성 빈도해석 모형에 외부기상인자를 결합하여 계절단위의 강수량을 예측하는데 목적을 두고 있으며, 그 중에서도 홍수 위험도와 관련하여 유용하게 이용될 수 있는 여름강수량을 예측 대상으로 하였다. 비정상성 빈도해석 모형을 기반으로 외부 기상인자에 의한 변동성을 고려하기 위해서는 대상 수문량을 한정할 필요가 있으며 극대치강수량과 연관성이 높은 장마전선, 태풍 등의 기상인자는 공간적 변동성 및 복합적인 특성들로 인해 예측인자를 구성하는 기상인자로 사용하기에는 무리가 있다. 따라서 본 연구에서는 계절단위의 수문량으로 여름강수량을 대상으로 하였으며, 이에 영향을 미치는 외부 기상인자로서 SST(sea surface temperature)와 OLR(outgoing longwave radiation)을 도입하였으며, 낙동강유역 여름강수량과의 공간 상관성이 높은 지역의 이전 겨울 SST와 6월 OLR을 예측인자로 활용한 7~9월 여름강수량 예측모형을 구성하였다. 모형의 검증은 결과를 알고 있는 2010년 여름 강수량을 대상으로 수행하였으며, 모형의 적용은 현재시점에서 관측된 2010년 겨울 SST와, 과거 관측 자료를 토대로 가정된 2011년 6월 OLR을 이용하여 2011년 여름 강수량을 예측하였다. 결과적으로 모형 매개변수들의 사후분포로부터 불확실성 구간을 포함한 예측결과를 구할 수 있었다.

  • PDF

베이지안 방법을 이용한 정상성 및 비정상성 GEV모형의 불확실성 비교 연구 (Comparison Study of Uncertainty between Stationary and Nonstationary GEV Models using the Bayesian Inference)

  • 김한빈;주경원;정영훈;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.298-298
    • /
    • 2016
  • 최근 기후변화의 영향으로 시간에 따라 자료 및 통계적 특성이 변하는 비정상성이 다양한 수문자료에서 관측됨에 따라 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 비정상성 빈도해석에 사용되는 비정상성 확률 모형은 기존의 매개변수를 시간에 따라 변하는 공변량이 포함된 함수의 형태로 나타내기 때문에, 정상성 확률 모형에 비해 매개변수의 개수가 많으며 복잡한 형태를 가지게 된다. 따라서 본 연구에서는 비정상성 고려 시 모형이 복잡해짐에 따라 매개변수 및 확률 수문량의 불확실성이 어떻게 변하는지 알아보고자 하였다. 베이지안 방법은 매개변수 추정 및 확률 수문량의 산정 뿐 아니라 이에 대한 불확실성을 정량화할 수 있는 방법 중 하나이다. 따라서 베이지안 방법에서 매개변수 추정에 주로 쓰이는 Monte Carlo Markov Chain (MCMC) 방법 중 하나인 Metropolis-Hastings 알고리즘을 이용하여 정상성 및 비정상성 GEV모형에 대한 매개변수 및 확률수문량의 사후분포를 산정하였다. 산정된 사후분포의 사후구간을 통해 각 모형의 불확실성을 정량화하였으며, 계산된 불확실성의 비교를 통해 모형의 복잡성이 불확실성에 미치는 영향을 평가하였다.

  • PDF

샘플링오차에 의한 품질통계 모형의 해석 (Interpretation of Quality Statistics Using Sampling Error)

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제10권2호
    • /
    • pp.205-210
    • /
    • 2008
  • The research interprets the principles of sampling error design for quality statistics models such as hypothesis test, interval estimation, control charts and acceptance sampling. Introducing the proper discussions of the design of significance level according to the use of hypothesis test, then it presents two methods to interpret significance by Neyman-Pearson and Fisher. Second point of the study proposes the design of confidence level for interval estimation by Bayesian confidence set, frequentist confidential set and fiducial interval. Third, the content also indicates the design of type I error and type II error considering both productivity and customer claim for control chart. Finally, the study reflects the design of producer's risk with operating charistictics curve, screening and switch rules for the purpose of purchasing and subcontraction.

A Comparison study of Hybrid Monte Carlo Algorithm

  • 황진수;전성해;이찬범
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.135-140
    • /
    • 2000
  • 베이지안 신경망 모형(Bayesian Neural Networks Models)에서 주어진 입력값(input)은 블랙 박스(Black-Box)와 같은 신경망 구조의 각 층(layer)을 거쳐서 출력값(output)으로 계산된다. 새로운 입력 데이터에 대한 예측값은 사후분포(posterior distribution)의 기대값(mean)에 의해 계산된다. 주어진 사전분포(prior distribution)와 학습데이터에 의한 가능도함수(likelihood functions)를 통해 계산되어진 사후분포는 매우 복잡한 구조를 갖게 됨으로서 기대값의 적분계산에 대한 어려움이 발생한다. 이때 확률적 추정에 의한 근사 방법인 몬테칼로 적분을 이용한다. 이러한 방법으로서 Hybrid Monte Carlo 알고리즘은 우수한 결과를 제공하여준다(Neal 1996). 본 논문에서는 Hybrid Monte Carlo 알고리즘과 기존에 많이 사용되고 있는 Gibbs sampling, Metropolis algorithm, 그리고 Slice Sampling등의 몬테칼로 방법들을 비교한다.

  • PDF

베이지안 다계층모형을 이용한 가격인상에 따른 판매량의 동적변화 추정 및 예측 (Estimation of Dynamic Effects of Price Increase on Sales Using Bayesian Hierarchical Model)

  • 전덕빈;박성호
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.798-805
    • /
    • 2005
  • Estimating the effects of price increase on a company's sales is important task faced by managers. If consumer has prior information on price increase or expect it, there would be stockpiling and subsequent drops in sales. In addition, consumer can suppress demand in the short run. Above factors make the sales dynamic and unstable. We develop a time series model to evaluate the sales patterns with stockpiling and short term suppression of demand and also propose a forecasting procedure. For estimation, we use panel data and extend the model to Bayesian hierarchical structure. By borrowing strength across cross-sectional units, this estimation scheme gives more robust and reasonable result than one from the individual estimation. Furthermore, the proposed scheme yields improved predictive power in the forecasting of hold-out sample periods.

  • PDF

베이지안 기법을 이용한 주관적 가중선형효용모형 (The Subjectively Weighted Linear Utility Model using Bayesian Approach)

  • 김기윤;나관식
    • 한국경영과학회지
    • /
    • 제19권3호
    • /
    • pp.111-129
    • /
    • 1994
  • In this study, we develope a revised model as well as application of decision problem under ambiguity based on the subjectively weighted linear utility medel. Bayes'rule is used when there are ambiguous probabilities on a decision problem and test information is available. A procedure for assessing the ambiguity aversion function is also presented. Decision problem of chemical corporation is used for an illustration of the application of the subjectively weighted linear utility model using Bayesian approach. We present the optimal decisiond using newly developed model. We also perform the sensitivity analysis to assure ourselves about the conclusion we obtianed on degree of ambiguity aversion due to characterize parameter of subjectively weighted linear utility model.

  • PDF

2-단계 확률화응답모형에 대한 베이즈 선형추정량에 관한 연구 (A Study on the Bayes Linear Estimator for the 2-stage Randomized Response Models)

  • 염준근;손창균
    • 품질경영학회지
    • /
    • 제23권3호
    • /
    • pp.113-125
    • /
    • 1995
  • This paper describes the 2-stage randomized response model in the Bayesian view point. The classical Bayesian analysis needs the complete information for a prior density, but the Bayes linear estimator needs only the first and second moments. Therefore, it is convenient to find the estimator and this estimator robusts to a prior density. We show that MSE's of the Bayes linear estimators for the 2-stage randomized response models are smaller than those of the MLE's for the 2-stage randomized response models.

  • PDF

순서화 모수에 대한 베이지안 추정 (Bayesian estimation of ordered parameters)

  • 정광모;정윤식
    • 응용통계연구
    • /
    • 제9권1호
    • /
    • pp.153-164
    • /
    • 1996
  • 분포함수의 모수가 순서제약조건을 갖는 경우에 깁스샘플러(Gibbs sampler)를 이용한 모수 추정에 관해 논의하였다. 순서화 모수를 갖는 지수분포족 및 이항분포모형을 고려하고 완전조건부 분포를 유도하였으며 순서제약 조건을 만족하는 표본추출을 위해 일 대 일 대응 추출 알고리즘을 적용하였다. 동위회귀 최우추정량 및 동위베이지안 추정량과 그 결과를 비교하였다.

  • PDF

개 심장사상충을 진단하기 위한 중합연쇄반응검사 (PCR)의 진단적 특성 평가 (Evaluation of Diagnostic Performance of a Polymerase Chain Reaction for Detection of Canine Dirofilaria immitis)

  • 박선일;김두
    • 한국임상수의학회지
    • /
    • 제24권2호
    • /
    • pp.77-81
    • /
    • 2007
  • 본 연구는 개에서 심장사상충을 검출하기 위하여 표준검사를 적용하지 않은 상황에서 중합연쇄반응검사 (PCR)의 진단 능력을 평가하였다. 효소면역검사법 (ELISA)과 PCR 검사를 동시에 사용한 경우 PCR 검사의 민감도와 특이도는 두 검사의 조건부 독립을 가정한 상태에서expectation-maximization (EM) 알고리즘을 이용한 최대우도법과 Bayesian 기법으로 두 집단 검사 모형으로 분석하였다 2002-2004년 기간 중 심장사상충검사 결과를 기록한 의무기록에서 무작위로 266개 결과를 추출하여 133개씩 2회의 시험으로 배치하였다. 2회의 분석결과를 종합할 때 EM 알고리즘에서 PCR 검사의 민감도와 특이도는 각각 96.4-96.7%와 97.6-98.8%, Bayesian기법에서는 94.4-94.8h와 97.1-98%로 추정되었다. PCR 검사는 심장사상충을 스크리닝하는 도구로 유용하며, 표준검사를 적용하지 않은 상황에서 진단검사의 특성을 추론하는 방법으로 Bayesian 기법은 매우 유용함을 확인하였다.

기후변화 및 단기예측을 시공간적 다지점 Downscaling 기법 개발 (Development of Multisite Spatio-Temporal Downscaling for Climate Change and Short-term Prediction)

  • 권현한;문영일;문장원;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.120-124
    • /
    • 2009
  • 기후변화로 인한 사회, 경제, 자원, 환경, 수자원 등에 영향분석은 세계적인 연구 트렌드로 자리 잡고 있다. 다양한 모형들이 기후변화 영향을 효과적으로 평가하기 위해서 개발되고 있으나 주로 강우-유출 모형을 통한 유출의 변화 특성을 모의하는데 대부분의 연구가 초점을 맞추고 있다. 그러나 기본적으로 사용되는 강수량자료의 정확한 추정이 기후변화 연구에서 가장 중요하다고 해도 과언이 아니다. 이러한 관점에서 GCM 기후모형으로부터 유도된 기후변화 시나리오로부터 여러 단계로 가공하여 모형의 입력 자료로 사용하기 위한 강수량 자료를 생산하게 된다. 이러한 과정을 총칭해서 Downscaling이라고 한다. 본 연구에서는 기후모형으로 얻은 정보를 유역단위의 수문시나리오로 변환하기 위한 통계학적 Downscaling의 연구이론 변천 상황을 종합적으로 검토하고 각 모형이 갖는 장단점을 분석하고자 한다. 즉, Weather Generator, Single-site Nonstationary Markov Chain, Multi-site Nonstationary Markov Chain, Multi-site Weather State Based Markov Model 등 다양한 모델의 변화 및 진보 과정을 살펴보고 실제 국내 유역에 적용하여 모형의 타당성을 평가해보고자 한다. 이를 위해 IPCC 기후변화 시나리오를 활용하였으며 일강수량자료계열의 특성치, 극치수문량 변동특성 등 기후변화에 따른 영향분석을 일부 실시하여 분석하였다.

  • PDF