• 제목/요약/키워드: Bayesian 가뭄 심도 지수

검색결과 8건 처리시간 0.033초

신경망을 이용한 우리나라의 시공간적 가뭄의 해석 (Spatial-Temporal Drought Analysis of South Korea Based On Neural Networks)

  • 신현석;박무종
    • 한국수자원학회논문집
    • /
    • 제32권1호
    • /
    • pp.15-29
    • /
    • 1999
  • 본 연구에서는 공간적으로 분포되어 있는 연강우량 자료를 이용한 지역 기상학적인 가뭄을 정의하고 해석하는 모형을 제시하였다. 비선형. 비매개변수법에 기초한 공간 해석 신경망(Spatial Analysis Neural Network; SANN)모형을 이용하여, 각 년에 대하여 공간의 임의 점에서의 극심, 심 경심, 및 비 가뭄 확률을 전 대상 지역에 대하여 산출을 통하여 가뭄확률도를 작성하며, Bayesian 가뭄 심도 지수(BDSI)를 통하여 전 대상 지역을 가장 적적하게 극심, 심, 경심, 비 가뭄 지역으로 분류하는 방법을 제시하였다. 또한, 각 년의 대표적인 가뭄의 형태를 제시하여 줄 수 있는 지역 가뭄 확률과 지역 가뭄 확률 지수를 소개하였다. 이 모든 시공간적 가뭄 해석의 방법은 실제로 우리나라(남한) 전역에 대하여 실시하여, 과거 1967년부터 1996년 까지의 공간적이고 시간적인 가뭄의 발생 현황과 그 특징을 조사 하였다. 본 연구는 우리나라 장기 수자원 개발 및 유역 관리를 위한 공간적이고도 시간적인 가뭄 정보를 제공하였다는 데 그 의의가 있을 것이다.

  • PDF

신경망을 이용한 우리나라의 시공 간적 가뭄의 해석 (Spatial-Temporal Frough Analysis of South Korea Based On Neural Networks)

  • 신현석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1998년도 학술발표회 논문집
    • /
    • pp.7-13
    • /
    • 1998
  • 본 연구에서는 공간적으로 분포되어 있는 연강우량 자료를 이용한 지역 기상학 적인 가뭄을 정의하고 해석하는 모형을 제시한다. 비선형, 비매변수법에 기초한 공간 해석 신경망 (Spatial Analysis Neural Network:SANN)모형을 이용하여, 각 년에 대하여 공간의 임의 점에 서 의 극심, 심, 경심, 및 비 가뭄 확률을 전 대상 지역에 대하여 산출을 통하여 가뭄확률도를 작성 하며, Bayesian 가뭄 심도 지수 (BDSI)를 통하여 전 대상 지역을 가장 적절하게 극심, 심, 경심, 미 가뭄 지역으로 분류하는 방법을 제시한다. 또한, 각 년의 대표적인 가뭄의 형태를 제시 하여 줄 수 있는 지역 가뭄확률과 지역 가뭄 확률 지수를 소개한다. 이 모든 시공간의 가뭄 해석의 방법 은 실제로 우리나라(남한) 전역에 대하여 실시하여, 과거 1967년부터 1996년 까지 의 공간적이고 시간적인 가뭄의 발생 현황과 그 특징을 조사한다. 이는 우리나라 장기 수자원 개발 및 유역 관 리를 더욱 정량적인 가뭄정보에 의해 수행하게하여 줄 수 있을 것이다.

  • PDF

베이지안 분류 기반 통합가뭄지수를 활용한 낙동강 유역의 미래 가뭄에 대한 수문학적 위험도 분석 (Evaluation of Future Hydrologic Risk of Drought in Nakdong River Basin Using Bayesian Classification-Based Composite Drought Index)

  • 김혁;김지은;김지영;유지영;김태웅
    • 대한토목학회논문집
    • /
    • 제43권3호
    • /
    • pp.309-319
    • /
    • 2023
  • 최근 기후변화로 인해 기상재해의 발생빈도와 강도가 증가하고 있다. 우리나라는 지역별 기후 특성의 편차로 인해 기후변화에 따른 취약성 및 대응능력이 지역별로 차이가 크다. 특히 가뭄은 다양한 요인에 의해 발생하고, 기상학적, 수문학적, 농업적 영향 범위가 광범위하다. 따라서 가뭄에 효과적으로 대응하기 위해서는 다양한 요인을 고려할 수 있는 통합가뭄지수를 활용할 필요가 있으며, 기후변화를 고려한 미래 가뭄을 종합적으로 평가해야 한다. 본 연구에서는 베이지안 분류(DNBC) 기반의 통합가뭄지수를 활용하여 낙동강 유역의 미래 가뭄에 대한 수문학적 위험도(${\bar{R}}$)를 평가하였다. 우선, 관측자료와 기후변화 시나리오 자료를 이용하여 부문별 가뭄지수(SPI, SDI, ESI, WSCI)를 DNBC에 적용하여 통합가뭄지수를 산정하였다. 산정된 통합가뭄지수의 심도와 지속기간을 대상으로 이변량 가뭄빈도분석을 실시하고, 이변량 재현기간을 활용하여 수문학적 위험도를 산정하였다. 그 결과, S2(2021-2040) 기간에서 위험도가 가장 높게 나타났으며(${\bar{R}}$=0.572), 평균적으로 위험도가 가장 높은 지역은 밀양강(#2021)이었다(${\bar{R}}$=0.94). 단기 미래(2021-2040) 기간 동안 낙동강 유역의 수문학적 위험도는 전반적으로 큰 폭으로 상승하였으며, 중·장기 미래(2041-2070, 2071-2099) 기간 동안 낙동강 유역 북부의 위험도는 감소하고 남부의 위험도는 상승하였다.

동적 베이지안 분류기와 이변량 가뭄빈도분석을 통한 우리나라 미래 가뭄 전망 (Prediction of future drought in Korea using dynamic Bayesian classifier and bivariate drought frequency analysis)

  • 김혁;김민지;김태웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.193-193
    • /
    • 2023
  • 여러 기후변화 시나리오에 의하면 기상재해의 발생빈도 및 강도가 증가할 것으로 예상된다. 그중 가뭄은 강수량 부족, 하천유량 감소, 토양 함수량 감소, 용수 수요량 증가 등의 다양한 요인으로 인해 발생하며, 한 가지 형태뿐만 아니라 복합적인 형태로 발생할 수 있다. 또한, 우리나라는 지역마다 기후 특성의 편차가 있어 기후변화에 따른 가뭄 취약성과 대응 능력이 지역마다 다르게 나타난다. 따라서 가뭄에 대응하기 위해서는 다양한 요인을 고려한 통합가뭄지수를 활용해야 하며, 미래의 기후변화를 고려하여 종합적으로 가뭄을 평가해야 한다. 본 연구에서는 동적 베이지안 분류기(DNBC) 기반의 통합가뭄지수를 활용하여 우리나라 전국에 대해 수문학적 위험도를 분석하고 미래 가뭄을 전망하였다. 기상학적, 수문학적, 농업적 및 사회경제적 요인을 고려한 통합가뭄지수를 산정하기 위하여 DNBC 분류기의 인자로 기후변화 시나리오 기반의 기상학적 가뭄지수 SPI, 수문학적 가뭄지수 SDI, 농업적 가뭄지수 ESI와 사회경제적 가뭄지수 WSCI를 활용하였다. 산정된 통합가뭄지수의 시계열을 기반으로 심도와 지속기간을 추출하고, 코플라 함수를 활용한 이변량 가뭄빈도분석을 수행하였다. 이후, 이변량 가뭄빈도분석에 의해 산정된 재현기간을 활용하여 수문학적 위험도를 산정하였다. 그 결과, P1(2021~2040) 기간이 수문학적 위험도 R=0.588로 가장 높은 위험도를 나타냈으며, 이후 P2(2041~2070) 기간까지 감소하였다가 P3(2071~2099) 기간에 다시 증가하는 추세를 보였다. P1(2021~2040) 기간과 P3(2071~2099) 기간은 영산강 유역이 각각 R=0.625(P1), R=0.550(P3)으로 가장 높은 위험도를 나타냈으나, P2(2041~2070) 기간은 금강 유역이 수문학적 위험도 R=0.482로 가장 높게 나타났다. 본 연구결과를 통해 향후 미래 가뭄에 대한 가뭄계획 수립 시에 기초자료로서 활용성이 높을 것으로 기대된다.

  • PDF

베이지안 네트워크 모형을 이용한 낙동강 유역의 가뭄과 수질관리의 인과관계에 대한 확률론적 평가 (Probabilistic assessment of causal relationship between drought and water quality management in the Nakdong River basin using the Bayesian network model)

  • 유지영;유재희;이주헌;김태웅
    • 한국수자원학회논문집
    • /
    • 제54권10호
    • /
    • pp.769-777
    • /
    • 2021
  • 본 연구에서는 낙동강 유역의 수질관리에 미치는 기상학적 가뭄의 영향을 평가하였다. 3개의 가뭄지수(30일-, 60일-, 90일-표준강수지수)를 바탕으로 심한 가뭄의 발생여부를 판단하고, 생화학적산소요구량(BOD), 총유기탄소량(TOC), 그리고 총인(T-P)에 대한 목표수질 달성비율을 분석하여, 계절에 따른 중권역의 심한 가뭄 발생이 수질관리에 큰 영향을 미치는 지역을 구분하였다. 이러한 중권역에 대하여 베이지안 네트워크 모형을 이용한 가뭄-수질관리 간의 인과관계를 확률론적으로 해석하였다. 낙동강유역의 22개 중권역 중 4개의 중권역(#2005(영강), #2018(남강댐), #2021(밀양강), #2022(낙동강하구언))이 심한가뭄에 대한 수질관리에 취약성이 큰 것으로 나타났다. 또한, 봄과 가을철 수질관리에 미치는 가뭄의 영향이 가장 큰 지역은 #2021, 여름철은 #2005, 겨울철은 #2022인 것으로 나타났다. 이러한 가뭄과 수질관리 간의 인과관계에 대한 분석결과는 사전적 가뭄관리에서의 활용도가 클 것이다.

비정상성 가뭄빈도해석에 의한 SDF 곡선의 유도 (Derivation of SDF(Severity-Duration-Frequency) Curve using Non-Stationary Drought Frequency Analysis)

  • 장호원;박서연;김태웅;이주헌
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2017
  • 기후변화로 인하여 극한 홍수와 극한 가뭄 발생이 증가할 것으로 전망하고 있어 이에 대한 위험이 대두되고 있는 실정이다. 홍수 및 가뭄 수문시계열의 빈도해석시에 일반적으로 활용되는 정상성 빈도해석기법은 수문자료의 정상성을 기반으로 한 빈도해석이 대부분이기 때문에 기후변화 및 수문자료의 비정상성을 반영한 새로운 빈도해석 기법이 요구되고 있는 상황이다. 본 연구에서는 5개의 대표 관측지점(서울, 포항, 추풍령, 여수, 광주)를 선별하고 1976년부터 2015년까지 일강우자료를 활용하여 기상학적 가뭄지수인 SPI(Standardized Precipitation Index)를 산정하였다. 산정한 SPI의 경향성을 Mann-Kendall 분석을 하였으며, 정상성 및 비정상성 빈도해석을 위하여 최적확률분포로 선정된 GEV 분포 적용하였다. 본 연구에서는 가뭄빈도해석을 위하여 SPI를 입력자료로 활용하였으며, 산정된 SPI의 비정상성을 반영한 비정상성 빈도해석의 경우 Bayesian 모형을 기반으로 한 MCMC(Markov Chain Monte Carlo) 모의를 이용하여 극치분포의 사후분포 매개변수를 추정하였다. 추정 값을 바탕으로 하여 가뭄의 관측소별 빈도해석을 실시하였고 재현기간별-지속기간별 가뭄심도를 추정하여 관측소별 가뭄심도-지속기간-빈도(SDF,Severity-Duration-Frequency) 곡선을 유도하였다. 본 연구를 통하여 정상성과 비정상성 빈도해석 결과의 비교연구를 수행하였으며 기후변화에 따른 비정상 시계열로 구성된 가뭄빈도해석에 매우 유용하게 적용될 수 있을 것으로 나타났다.

  • PDF

지역의 사회·경제적 인자와 용수공급체계를 고려한 가뭄 위험도 평가 (Drought risk assessment considering regional socio-economic factors and water supply system)

  • 김지은;김민지;최시중;이주헌;김태웅
    • 한국수자원학회논문집
    • /
    • 제55권8호
    • /
    • pp.589-601
    • /
    • 2022
  • 가뭄은 자연적 현상이지만, 지역의 물리적 및 사회적 요소와 결합되어 피해가 발생한다. 특히, 각종 용수 공급 및 수요과 연관되어 사회 경제적으로 큰 피해를 야기시킨다. 비슷한 심도의 기상학적 가뭄에도 지역의 특성과 용수공급체계에 따라 실제로 발생하는 가뭄 피해는 다르다. 본 연구에서는 지역의 사회·경제적 인자와 용수공급체계를 고려하여 가뭄 위험도를 평가하였다. 노출성은 용수공급 과부족량을 나타내는 결합가뭄관리지수(JDMI)를 등급화하여 평가하였다. 취약성은 가뭄에 영향을 받는 10개의 사회·경제적 인자에 엔트로피, PCA 및 GMM를 적용하여 가중평균하여 평가하였다. 대응능력은 지역의 용수능력을 나타내는 인자들을 베이지안 네트워크에 적용하여 평가하였다. 위험도는 노출성, 취약성 및 대응능력을 통합하여 결정하였다. 용수공급 실패 사상의 발생 가능성을 의미하는 가뭄 노출성을 평가한 결과, 괴산군이 0.81로 가장 높게 나타났다. 가뭄 취약성의 경우, 대전광역시가 0.61로 매우 취약한 것으로 나타났다. 지역의 용수공급체계가 고려된 가뭄 대응능력을 평가한 결과, 세종시가 가뭄 대응능력이 가장 낮은 것으로 나타났다. 마지막으로 위험도를 평가한 결과, 청주시가 가장 높게 나타났다. 이러한 결과를 통해 가뭄에 대한 위험 및 취약 원인을 파악하였으며, 향후 지역의 특성을 고려한 가뭄 피해 저감 정책 마련이 가능하다.

비정상성 가뭄빈도 해석 기법에 따른 가뭄 심도-지속기간-재현기간 곡선 유도에 관한 연구 (A Study on derivation of drought severity-duration-frequency curve through a non-stationary frequency analysis)

  • 정민수;박서연;장호원;이주헌
    • 한국수자원학회논문집
    • /
    • 제53권2호
    • /
    • pp.107-119
    • /
    • 2020
  • 본 연구는 한반도의 관측 강우자료를 기반으로 하여 과거의 가뭄 특성을 파악함과 동시에 RCP 8.5 기후변화 시나리오를 활용한 장래 발생 가능한 극치 가뭄에 대한 장기전망을 수행하였다. 정량적인 가뭄 분석을 위해 기상학적 가뭄지수인 표준강수지수(Standardized Precipitation Index, SPI)를 적용하였으며 일단위 강우 관측 자료 및 RCP 시나리오를 단일한 장기 시계열 자료로 구축하여 1, 3, 6, 9, 12개월 지속기간의 SPI 입력인자로 활용하였다. 한반도의 지역별 가뭄특성 분석을 위한 대상 강우관측소는 1954년 시점부터 강우 자료를 보유하고 있는 12개 관측 지점을 선정하였으며, 동일 지점의 10개 GCM(General Circulation Model)을 적용하였다. 기후변화에 따른 가뭄 특성 변화 분석을 위해 강우발생일수와 총강수량에 대한 12개 강우관측소별 추세 변동 분석 및 군집화를 수행하였다. 샘플링 기법을 활용한 비정상성 빈도분석을 위해 베이지안 기반의 DE(Differential Evolution)와 MCMC(Markov Chain Monte Carlo)를 결합한 DEMC 기법을 채택하였고, 비정상성 가뭄빈도해석을 통하여 12개 지점별 SDF(Severity-Duration-Frequency) 곡선을 유도하였다. 비정상성을 가정한 장기 수문자료를 보유한 지점들의 SDF 곡선 산정을 통해 미래의 가뭄에 대한 정량적인 전망을 수행하였다. 장기시계열 자료를 보유한 12개 지점의 군집분석을 수행한 결과 Zone 1-2, 2, 3-2에 해당하는 제주를 제외한 전주, 광주, 여순, 목포, 추풍령 등에서 장래에 가뭄발생 위험이 높은 것으로 분석되었다. 장래 발생 가능한 가뭄 위험성을 정량적으로 파악함으로써 미래 가뭄관리 정책에 충분히 활용될 수 있을 것으로 기대된다.