• Title/Summary/Keyword: Bayes method

Search Result 365, Processing Time 0.034 seconds

Prediction model of osteoporosis using nutritional components based on association (연관성 규칙 기반 영양소를 이용한 골다공증 예측 모델)

  • Yoo, JungHun;Lee, Bum Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.457-462
    • /
    • 2020
  • Osteoporosis is a disease that occurs mainly in the elderly and increases the risk of fractures due to structural deterioration of bone mass and tissues. The purpose of this study are to assess the relationship between nutritional components and osteoporosis and to evaluate models for predicting osteoporosis based on nutrient components. In experimental method, association was performed using binary logistic regression, and predictive models were generated using the naive Bayes algorithm and variable subset selection methods. The analysis results for single variables indicated that food intake and vitamin B2 showed the highest value of the area under the receiver operating characteristic curve (AUC) for predicting osteoporosis in men. In women, monounsaturated fatty acids showed the highest AUC value. In prediction model of female osteoporosis, the models generated by the correlation based feature subset and wrapper based variable subset methods showed an AUC value of 0.662. In men, the model by the full variable obtained an AUC of 0.626, and in other male models, the predictive performance was very low in sensitivity and 1-specificity. The results of these studies are expected to be used as the basic information for the treatment and prevention of osteoporosis.

Sensitivity Identification Method for New Words of Social Media based on Naive Bayes Classification (나이브 베이즈 기반 소셜 미디어 상의 신조어 감성 판별 기법)

  • Kim, Jeong In;Park, Sang Jin;Kim, Hyoung Ju;Choi, Jun Ho;Kim, Han Il;Kim, Pan Koo
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • From PC communication to the development of the internet, a new term has been coined on the social media, and the social media culture has been formed due to the spread of smart phones, and the newly coined word is becoming a culture. With the advent of social networking sites and smart phones serving as a bridge, the number of data has increased in real time. The use of new words can have many advantages, including the use of short sentences to solve the problems of various letter-limited messengers and reduce data. However, new words do not have a dictionary meaning and there are limitations and degradation of algorithms such as data mining. Therefore, in this paper, the opinion of the document is confirmed by collecting data through web crawling and extracting new words contained within the text data and establishing an emotional classification. The progress of the experiment is divided into three categories. First, a word collected by collecting a new word on the social media is subjected to learned of affirmative and negative. Next, to derive and verify emotional values using standard documents, TF-IDF is used to score noun sensibilities to enter the emotional values of the data. As with the new words, the classified emotional values are applied to verify that the emotions are classified in standard language documents. Finally, a combination of the newly coined words and standard emotional values is used to perform a comparative analysis of the technology of the instrument.

An Efficient Face Region Detection for Content-based Video Summarization (내용기반 비디오 요약을 위한 효율적인 얼굴 객체 검출)

  • Kim Jong-Sung;Lee Sun-Ta;Baek Joong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.675-686
    • /
    • 2005
  • In this paper, we propose an efficient face region detection technique for the content-based video summarization. To segment video, shot changes are detected from a video sequence and key frames are selected from the shots. We select one frame that has the least difference between neighboring frames in each shot. The proposed face detection algorithm detects face region from selected key frames. And then, we provide user with summarized frames included face region that has an important meaning in dramas or movies. Using Bayes classification rule and statistical characteristic of the skin pixels, face regions are detected in the frames. After skin detection, we adopt the projection method to segment an image(frame) into face region and non-face region. The segmented regions are candidates of the face object and they include many false detected regions. So, we design a classifier to minimize false lesion using CART. From SGLD matrices, we extract the textual feature values such as Inertial, Inverse Difference, and Correlation. As a result of our experiment, proposed face detection algorithm shows a good performance for the key frames with a complex and variant background. And our system provides key frames included the face region for user as video summarized information.

Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis (소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구)

  • Chang Min Kang;Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.

Bayesian Interval Estimation of Tobit Regression Model (토빗회귀모형에서 베이지안 구간추정)

  • Lee, Seung-Chun;Choi, Byung Su
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.737-746
    • /
    • 2013
  • The Bayesian method can be applied successfully to the estimation of the censored regression model introduced by Tobin (1958). The Bayes estimates show improvements over the maximum likelihood estimate; however, the performance of the Bayesian interval estimation is questionable. In Bayesian paradigm, the prior distribution usually reflects personal beliefs about the parameters. Such subjective priors will typically yield interval estimators with poor frequentist properties; however, an objective noninformative often yields a Bayesian procedure with good frequentist properties. We examine the performance of frequentist properties of noninformative priors for the Tobit regression model.

Mobile Junk Message Filter Reflecting User Preference

  • Lee, Kyoung-Ju;Choi, Deok-Jai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2849-2865
    • /
    • 2012
  • In order to block mobile junk messages automatically, many studies on spam filters have applied machine learning algorithms. Most previous research focused only on the accuracy rate of spam filters from the view point of the algorithm used, not on individual user's preferences. In terms of individual taste, the spam filters implemented on a mobile device have the advantage over spam filters on a network node, because it deals with only incoming messages on the users' phone and generates no additional traffic during the filtering process. However, a spam filter on a mobile phone has to consider the consumption of resources, because energy, memory and computing ability are limited. Moreover, as time passes an increasing number of feature words are likely to exhaust mobile resources. In this paper we propose a spam filter model distributed between a users' computer and smart phone. We expect the model to follow personal decision boundaries and use the uniform resources of smart phones. An authorized user's computer takes on the more complex and time consuming jobs, such as feature selection and training, while the smart phone performs only the minimum amount of work for filtering and utilizes the results of the information calculated on the desktop. Our experiments show that the accuracy of our method is more than 95% with Na$\ddot{i}$ve Bayes and Support Vector Machine, and our model that uses uniform memory does not affect other applications that run on the smart phone.

Bayesian smoothing under structural measurement error model with multiple covariates

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.709-720
    • /
    • 2017
  • In healthcare and medical research, many important variables have a measurement error such as body mass index and laboratory data. It is also not easy to collect samples of large size because of high cost and long time required to collect the target patient satisfied with inclusion and exclusion criteria. Beside, the demand for solving a complex scientific problem has highly increased so that a semiparametric regression approach could be of substantial value solving this problem. To address the issues of measurement error, small domain and a scientific complexity, we conduct a multivariable Bayesian smoothing under structural measurement error covariate in this article. Specifically we enhance our previous model by incorporating other useful auxiliary covariates free of measurement error. For the regression spline, we use a radial basis functions with fixed knots for the measurement error covariate. We organize a fully Bayesian approach to fit the model and estimate parameters using Markov chain Monte Carlo. Simulation results represent that the method performs well. We illustrate the results using a national survey data for application.

Practical evaluation of encrypted traffic classification based on a combined method of entropy estimation and neural networks

  • Zhou, Kun;Wang, Wenyong;Wu, Chenhuang;Hu, Teng
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.311-323
    • /
    • 2020
  • Encrypted traffic classification plays a vital role in cybersecurity as network traffic encryption becomes prevalent. First, we briefly introduce three traffic encryption mechanisms: IPsec, SSL/TLS, and SRTP. After evaluating the performances of support vector machine, random forest, naïve Bayes, and logistic regression for traffic classification, we propose the combined approach of entropy estimation and artificial neural networks. First, network traffic is classified as encrypted or plaintext with entropy estimation. Encrypted traffic is then further classified using neural networks. We propose using traffic packet's sizes, packet's inter-arrival time, and direction as the neural network's input. Our combined approach was evaluated with the dataset obtained from the Canadian Institute for Cybersecurity. Results show an improved precision (from 1 to 7 percentage points), and some application classification metrics improved nearly by 30 percentage points.

Change-point and Change Pattern of Precipitation Characteristics using Bayesian Method over South Korea from 1954 to 2007 (베이지안 방법을 이용한 우리나라 강수특성(1954-2007)의 변화시점 및 변화유형 분석)

  • Kim, Chansoo;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.199-211
    • /
    • 2009
  • In this paper, we examine the multiple change-point and change pattern in the 54 years (1954-2007) time series of the annual and the heavy precipitation characteristics (amount, days and intensity) averaged over South Korea. A Bayesian approach is used for detecting of mean and/or variance changes in a sequence of independent univariate normal observations. Using non-informative priors for the parameters, the Bayesian model selection is performed by the posterior probability through the intrinsic Bayes factor of Berger and Pericchi (1996). To investigate the significance of the changes in the precipitation characteristics between before and after the change-point, the posterior probability and 90% highest posterior density credible intervals are examined. The results showed that no significant changes have occurred in the annual precipitation characteristics (amount, days and intensity) and the heavy precipitation intensity. On the other hand, a statistically significant single change has occurred around 1996 or 1997 in the heavy precipitation days and amount. The heavy precipitation amount and days have increased after the change-point but no changes in the variances.

A Halal Food Classification Framework Using Machine Learning Method for Enhancing Muslim Tourists (무슬림 관광객 증대를 위한 머신러닝 기반의 할랄푸드 분류 프레임워크)

  • Kim, Sun-A;Kim, Jeong-Won;Won, Dong-Yeon;Choi, Yerim
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.273-293
    • /
    • 2017
  • Purpose The purpose of this study is to introduce a framework that helps Muslims to determine whether a food can be consumed. It can complement existing Halal food classification services having a difficulty of constructing Halal food database. Design/methodology/approach The proposed framework includes two components. First, OCR(Optical Character Recognition) technique is utilized to read the food additive information. Second, machine learning methods were used to trained and predicted to determine whether a food can be consumed using the provided information. Findings Among the compared machine learning methods, SVM(Support Vector Machine), DT(Decision Tree), and NB(Naive Bayes), SVM with linear kernel and DT had excellent performance in the Halal food classification. The framework which adopting the proposed framework will enhance the tourism experiences of Muslim tourists who consider keeping the Islamic law most importantly. Furthermore, it can eventually contribute to the enhancement of smart tourism ecosystem.