• Title/Summary/Keyword: Bayes Factor

Search Result 154, Processing Time 0.022 seconds

Bayesian test for the differences of survival functions in multiple groups

  • Kim, Gwangsu
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.2
    • /
    • pp.115-127
    • /
    • 2017
  • This paper proposes a Bayesian test for the equivalence of survival functions in multiple groups. Proposed Bayesian test use the model of Cox's regression with time-varying coefficients. B-spline expansions are used for the time-varying coefficients, and the proposed test use only the partial likelihood, which provides easier computations. Various simulations of the proposed test and typical tests such as log-rank and Fleming and Harrington tests were conducted. This result shows that the proposed test is consistent as data size increase. Specifically, the power of the proposed test is high despite the existence of crossing hazards. The proposed test is based on a Bayesian approach, which is more flexible when used in multiple tests. The proposed test can therefore perform various tests simultaneously. Real data analysis of Larynx Cancer Data was conducted to assess applicability.

Online Adaptation of Continuous Density Hidden Markov Models Based on Speaker Space Model Evolution (화자공간모델 진화에 근거한 연속밀도 은닉 마코프모델의 온라인 적응)

  • Kim Dong Kook;Kim Young Joon;Kim Hyun Woo;Kim Nam Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.69-72
    • /
    • 2002
  • 본 논문에서 화자공간모델 evolution에 기반한 continuous density hidden Markov model (CDHMM)의 online 적응에 대한 새로운 기법을 제안한다. 학습화자의 a priori knowledge을 나타내는 화자공간모델은 factor analysis (FA) 또는 probabilistic principal component analysis (PPCA)와 같은 은닉변수모델(latent variable model)에 의해 효과적으로 나타내어진다. 은닉 변수모델은 화자공간모델뿐아니라 CDHMM 파라메터의 ajoint prior분포를 표시함으로, maximum a posteriori(MAP)적응기법에 직접 적용되어진다. 화자공간모델의 hyperparameters와 CDHMM파라메터를 동시에 순차적으로 적응하기 위해 quasi-Bayes (QB)추정 기술에 기반한 online 적응기법을 제안한다. 연속숫자음 인식과 관련된 화자적응 실험을 통해 제안된 기법은 적은 적응데이터에서 좋은 성능을 나타내며, 데이터가 증가함에 따라 성능이 지속적으로 증가함을 보여준다.

  • PDF

Bayesian Procedure for the Multiple Test of Fraction Nonconforming (부적합률의 다중검정을 위한 베이지안절차)

  • Kim, Kyung-Sook;Kim, Hee-Jeong;Na, Myung-Hwan;Son, Young-Sook
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.325-329
    • /
    • 2006
  • In this paper, the Bayesian procedure for the multiple test of fraction nonconforming, p, is proposed. It is the procedure for checking whether the process is out of control, in control, or under the permissible level for p. The procedure is as follows: first, setting up three types of models, $M_1:p=p_0,\;M_2:pp_0$, second, computing the posterior probability of each model. and then choosing the model with the largest posterior probability as a model most fitted for the observed sample among three competitive models. Finally, the simulation study is performed to examine the proposed method.

  • PDF

The Impact of Comments on Music Download and Streaming: A Text Mining Analysis (댓글이 음원 판매량에 미치는 차별적 영향에 관한 텍스트마이닝 분석)

  • Park, Myeong-Seok;Kwon, Young-Jin;Lee, Sang-Yong Tom
    • Knowledge Management Research
    • /
    • v.19 no.2
    • /
    • pp.91-108
    • /
    • 2018
  • This study mainly focused on measuring the impact of comments for a particular song on the number of streamings and downloads. We modeled multiple regression equations to perform this analysis. We chose digital music market for the object of analysis because of its inherent characteristics, such as experience goods, high bandwagon effect, and so on. We carefully utilized text mining technique in accordance with the algorithm of Naïve Bayes classifier to distinguish whether a comment for a piece of music be regarded as positive or negative. In addition, we used 'size of agency' and 'existence of hit song' as moderating variables. The reason for usage of those variables is that those are assumed to affect users' decision for selecting particular song especially when downloading or streaming via music sites. We found empirical evidences that positive comments for a particular song increase the number of both downloads and streamings. However, positive comments may decrease the number of downloads when the size of agency of the artist is big. As a result, we were able to say that a positive comment for a particular song functioned as 'word-of-mouth' effect, inducing other users' behavioral response. We also found that other features of an artist such as size of the agency that the artist belongs to functioned as an external factor along with feature of the song itself.

Change-point and Change Pattern of Precipitation Characteristics using Bayesian Method over South Korea from 1954 to 2007 (베이지안 방법을 이용한 우리나라 강수특성(1954-2007)의 변화시점 및 변화유형 분석)

  • Kim, Chansoo;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.199-211
    • /
    • 2009
  • In this paper, we examine the multiple change-point and change pattern in the 54 years (1954-2007) time series of the annual and the heavy precipitation characteristics (amount, days and intensity) averaged over South Korea. A Bayesian approach is used for detecting of mean and/or variance changes in a sequence of independent univariate normal observations. Using non-informative priors for the parameters, the Bayesian model selection is performed by the posterior probability through the intrinsic Bayes factor of Berger and Pericchi (1996). To investigate the significance of the changes in the precipitation characteristics between before and after the change-point, the posterior probability and 90% highest posterior density credible intervals are examined. The results showed that no significant changes have occurred in the annual precipitation characteristics (amount, days and intensity) and the heavy precipitation intensity. On the other hand, a statistically significant single change has occurred around 1996 or 1997 in the heavy precipitation days and amount. The heavy precipitation amount and days have increased after the change-point but no changes in the variances.

An Improvement Of Efficiency For kNN By Using A Heuristic (휴리스틱을 이용한 kNN의 효율성 개선)

  • Lee, Jae-Moon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.719-724
    • /
    • 2003
  • This paper proposed a heuristic to enhance the speed of kNN without loss of its accuracy. The proposed heuristic minimizes the computation of the similarity between two documents which is the dominant factor in kNN. To do this, the paper proposes a method to calculate the upper limit of the similarity and to sort the training documents. The proposed heuristic was implemented on the existing framework of the text categorization, so called, AI :: Categorizer and it was compared with the conventional kNN with the well-known data, Router-21578. The comparisons show that the proposed heuristic outperforms kNN about 30∼40% with respect to the execution time.

Socioeconomic Predictors of Diabetes Mortality in Japan: An Ecological Study Using Municipality-specific Data

  • Okui, Tasuku
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.5
    • /
    • pp.352-359
    • /
    • 2021
  • Objectives: The aim of this study was to examine the geographic distribution of diabetes mortality in Japan and identify socioeconomic factors affecting differences in municipality-specific diabetes mortality. Methods: Diabetes mortality data by year and municipality from 2013 to 2017 were extracted from Japanese Vital Statistics, and the socioeconomic characteristics of municipalities were obtained from government statistics. We calculated the standardized mortality ratio (SMR) of diabetes for each municipality using the empirical Bayes method and represented geographic differences in SMRs in a map of Japan. Multiple linear regression was conducted to identify the socioeconomic factors affecting differences in SMR. Statistically significant socioeconomic factors were further assessed by calculating the relative risk of mortality of quintiles of municipalities classified according to the degree of each socioeconomic factor using Poisson regression analysis. Results: The geographic distribution of diabetes mortality differed by gender. Of the municipality-specific socioeconomic factors, high rates of single-person households and unemployment and a high number of hospital beds were associated with a high SMR for men. High rates of fatherless households and blue-collar workers were associated with a high SMR for women, while high taxable income per-capita income and total population were associated with low SMR for women. Quintile analysis revealed a complex relationship between taxable income and mortality for women. The mortality risk of quintiles with the highest and lowest taxable per-capita income was significantly lower than that of the middle-income quintile. Conclusions: Socioeconomic factors of municipalities in Japan were found to affect geographic differences in diabetes mortality.

Effects of Financial College Tuition Support by Korean Parents using a Hierarchical Bayes Model (계층적 베이즈 모형을 이용한 대학등록금에 대한 부모님의 경제적 지원 영향 분석)

  • Oh, Man-Suk;Oh, Hyun Sook;Oh, Min Jung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.267-280
    • /
    • 2013
  • College tuition is a significant economic, social, and political issue in Korea. We conduct a Bayesian analysis of a hierarchical model to address the factors related to college tuition based on a survey data collected by Statistics Korea. A binary response variable is selected depending on if more than 70% of tuition costs are supported by parents, and a hierarchical Probit model is constructed with areas as groups. A set of explanatory variables is selected from a factor analysis of available variables in the survey. A Markov chain Monte Carlo algorithm is used to estimate parameters. From the analysis results, income and stress are significantly related to college tuition support from parents. Parents with high income tend to support children's college tuition and students with parents' financial support tend to be mentally less stressed; subsequently, this shows that the economic status of parents significantly affects the mental health of college students. Gender, a healthy life style, and college satisfaction are not significant factors. Comparing areas in terms of the degrees of correlation between stress/income and tuition support from parents, students in Kangwon-do are the most mentally stressed when parents' support is limited; in addition, the positive correlation between parents support and income is stronger in big cities compared to provincial areas.

The big data method for flash flood warning (돌발홍수 예보를 위한 빅데이터 분석방법)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.245-250
    • /
    • 2017
  • Flash floods is defined as the flooding of intense rainfall over a relatively small area that flows through river and valley rapidly in short time with no advance warning. So that it can cause damage property and casuality. This study is to establish the flash-flood warning system using 38 accident data, reported from the National Disaster Information Center and Land Surface Model(TOPLATS) between 2009 and 2012. Three variables were used in the Land Surface Model: precipitation, soil moisture, and surface runoff. The three variables of 6 hours preceding flash flood were reduced to 3 factors through factor analysis. Decision tree, random forest, Naive Bayes, Support Vector Machine, and logistic regression model are considered as big data methods. The prediction performance was evaluated by comparison of Accuracy, Kappa, TP Rate, FP Rate and F-Measure. The best method was suggested based on reproducibility evaluation at the each points of flash flood occurrence and predicted count versus actual count using 4 years data.

Fault Localization for Self-Managing Based on Bayesian Network (베이지안 네트워크 기반에 자가관리를 위한 결함 지역화)

  • Piao, Shun-Shan;Park, Jeong-Min;Lee, Eun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.137-146
    • /
    • 2008
  • Fault localization plays a significant role in enormous distributed system because it can identify root cause of observed faults automatically, supporting self-managing which remains an open topic in managing and controlling complex distributed systems to improve system reliability. Although many Artificial Intelligent techniques have been introduced in support of fault localization in recent research especially in increasing complex ubiquitous environment, the provided functions such as diagnosis and prediction are limited. In this paper, we propose fault localization for self-managing in performance evaluation in order to improve system reliability via learning and analyzing real-time streams of system performance events. We use probabilistic reasoning functions based on the basic Bayes' rule to provide effective mechanism for managing and evaluating system performance parameters automatically, and hence the system reliability is improved. Moreover, due to large number of considered factors in diverse and complex fault reasoning domains, we develop an efficient method which extracts relevant parameters having high relationships with observing problems and ranks them orderly. The selected node ordering lists will be used in network modeling, and hence improving learning efficiency. Using the approach enables us to diagnose the most probable causal factor with responsibility for the underlying performance problems and predict system situation to avoid potential abnormities via posting treatments or pretreatments respectively. The experimental application of system performance analysis by using the proposed approach and various estimations on efficiency and accuracy show that the availability of the proposed approach in performance evaluation domain is optimistic.