• Title/Summary/Keyword: Battle Experiment

Search Result 25, Processing Time 0.021 seconds

Virtual-Constructive Simulation Interoperation for Aircombat Battle Experiment (Virtual-Constructive 시뮬레이션 연동을 활용한 공중전 전투 실험)

  • Kim, Dongjun;Shin, Yongjin;An, Kyeong-Soo;Kim, Young-Gon;Moon, Il-Chul;Bae, Jang Won
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.139-152
    • /
    • 2021
  • Simulations enable virtually experiencing rare events as well as analytically analyzing such events. Defense modeling and simulation research and develops the virtual and the constructive simulations to support these utilizations. These virtual and constructive(VC) simulations can interoperate to simultaneously virtual combat experience as well as evaluations on tactics and intelligence of combat entities. Moreover, recently, for artificial intelligence researches, it is necessary to retrieve human behavior data to proceed the imitation learning and the inverse reinforcement learning. The presented work illustrates a case study of VC interoperations in the aircombat scenario, and the work analyze the collected human behavior data from the VC interoperations. Through this case study, we discuss how to build the VC simulation in the aircombat area and how to utilize the collected human behavior data.

Design of Scenario Creation Model for AI-CGF based on Naval Operations, Resources Analysis Model(I): Evolutionary Learning (해군분석모델용 AI-CGF를 위한 시나리오 생성 모델 설계(I): 진화학습)

  • Hyun-geun, Kim;Jung-seok, Gang;Kang-moon, Park;Jae-U, Kim;Jang-hyun, Kim;Bum-joon, Park;Sung-do, Chi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.617-627
    • /
    • 2022
  • Military training is an essential item for the fundamental problem of war. However, there has always been a problem that many resources are consumed, causing spatial and environmental pollution. The concepts of defense modeling and simulation and CGF(Computer Generated Force) using computer technology began to appear to improve this problem. The Naval Operations, Resources Analysis Model(NORAM) developed by the Republic of Korea Navy is also a DEVS(Discrete Event Simulation)-based naval virtual force analysis model. The current NORAM is a battle experiment conducted by an operator, and parameter values such as maneuver and armament operation for individual objects for each situation are evaluated. In spite of our research conducted evolutionary, supervised, reinforcement learning, in this paper, we introduce our design of a scenario creation model based on evolutionary learning using genetic algorithms. For verification, the NORAM is loaded with our model to analyze wartime engagements. Human-level tactical scenario creation capability is secured by automatically generating enemy tactical scenarios for human-designed Blue Army tactical scenarios.

A Study on the Operational Scheduling for ROK's Navy Ships Using NSGA-II (NSGA-II를 이용한 한국해군 함정 운용계획에 대한 연구)

  • Jung, Whan-Sik;Lee, Jae-Yeong;Lee, Yong-Dae
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.55-62
    • /
    • 2010
  • This paper studies the problem seeking an efficient operational scheduling for battle ships in the Republic of Korea's navy. The ships' availability means that their main systems such as weapons, navigation and propulsion are in full operational readiness. If some of the major systems are not ready, then the ships should not be available for operations. It is required to maintain a high level availability under the limited resources as it determines the strength of ROK's navy. However, it will result in inefficiencies if some ships are operated without proper maintenance only to improve their availability. Thus, this study suggests the operational scheduling for two squadron ships that considers multiple objectives such as availability, overlapping maintenance, and deviation from available ships in a particular week. We applied NSGA-II algorithm to find better solutions for more efficient scheduling. The experiment result reached an efficient solutions after 1,500 generations. Two efficient operational schedules were compared on the basis of three multiple objectives among them.

Observation of the Cosmic Near-Infrared Background with the CIBER rocket

  • Kim, Min-Gyu;Matsumoto, T.;Lee, Hyung-Mok;Arai, T.;Battle, J.;Bock, J.;Brown, S.;Cooray, A.;Hristov, V.;Keating, B.;Korngut, P.;Lee, Dae-Hee;Levenson, L.R.;Lykke, K.;Mason, P.;Matsuura, S.;Nam, U.W.;Renbarger, T.;Smith, A.;Sullivan, I.;Wada, T.;Zemcov, M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.42-42
    • /
    • 2012
  • The First stars (Pop.III stars) in the universe are expected to be formed between the recombination era at z - 1100 and the most distant quasar (z - 8). They have never been directly detected due to its faintness so far, but can be observed as a background radiation at around 1${\mu}m$ which is called the Cosmic Near-Infrared Background (CNB). Main part of the CNB is thought to be redshifted Lyman-alpha from gas clouds surrounding the Pop.III stars. Until now, the COBE (COsmic Background Explorer) and the IRTS (Infrared Telescope in Space) observed excess emission over the background due to galaxies. To confirm the COBE and the IRTS results and pursue more observational evidences, we carried out the sounding rocket experiment named the Cosmic Infrared Background ExpeRiment (CIBER). The CIBER is successfully launched on July 10, 2010 at White Sands Missile Range, New Mexico, USA. It consists of three kinds of instruments. We report the results obtained by LRS (Low Resolution Spectrometer) which is developed to fill the uncovered spectrum around 1${\mu}m$. LRS is a refractive telescope of 5.5 cm aperture with spectral resolution of 20 - 30 and wavelength coverage of 0.7 to 2.0${\mu}m$. After subtracting foreground components (zodiacal light, integrated star light and diffuse galactic light) from the sky brightness of observed five fields, there remained significant residual emission (even for the lower limit case) consistent with the IRTS and the COBE results. In addition, there exists a clear gap at 0.7 - 0.8${\mu}m$ in the CNB spectrum over the background due to galaxies according to recent results (Matsuoka et al. 2011; Mattila et al. 2011). The origin of the excess emission could be ascribed to the Pop.III stars with its active era of z = 7 - 10.

  • PDF

A Study on the Framework for Analyzing the Effectiveness of Cyber Weapon Systems Associated with Cyberspace and Physical Space (사이버 공간과 물리 공간이 연계된 사이버 무기체계의 효과성 분석 프레임워크 연구)

  • Jang, Ji-su;Kim, Kook-jin;Yoon, Suk-joon;Park, Min-seo;Ahn, Myung-Kil;Shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.111-126
    • /
    • 2022
  • As operations that were only conducted in physical space in the past change to operations that include cyberspace, it is necessary to analyze how cyber attacks affect weapon systems using cyber systems. For this purpose, it would be meaningful to analyze a tool that analyzes the effects of physical weapon systems in connection with cyber. The ROK military has secured and is operating the US JMEM, which contains the results of analyzing the effects of physical weapon systems. JMEM is applied only to conventional weapon systems, so it is impossible to analyze the impact of cyber weapon systems. In this study, based on the previously conducted cyber attack damage assessment framework, a framework for analyzing the impact of cyber attacks on physical missions was presented. To this end, based on the MOE and MOP of physical warfare, a cyber index for the analysis of cyber weapon system effectiveness was calculated. In addition, in conjunction with JMEM, which is used as a weapon system effect manual in physical operations, a framework was designed and tested to determine the mission impact by comparing and analyzing the results of the battle in cyberspace with the effects of physical operations. In order to prove the proposed framework, we analyzed and designed operational scenarios through domestic and foreign military manuals and previous studies, defined assets, and conducted experiments. As a result of the experiment, the larger the decrease in the cyber mission effect value, the greater the effect on physical operations. It can be used to predict the impact of physical operations caused by cyber attacks in various operations, and it will help the battlefield commander to make quick decisions.