• Title/Summary/Keyword: Battery saving

Search Result 115, Processing Time 0.029 seconds

Channel Variation Tracking based Effective Preferred BS Selection Scheme of Idle Mode Mobile device for Mobile WiMAX System (Mobile WiMAX시스템에서 채널품질 변동추적을 이용한 유휴모드 이동단말의 효율적인 선호기지국 선택 방안)

  • Lee, Kang-Gyu;Youn, Hee-Yong
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.471-484
    • /
    • 2010
  • In the wireless communication systems, the power consumption of a mobile device is very important issue due to its battery limitations. Hence most of the standards for wireless networks including a mobile WiMAX system are supporting their own power saving mode in way that a mobile device is able to reduce its energy usage while in the mode. However, those standards just define the arrangement of special time intervals, called a paging listening interval, during which the device needs to receive the paging-related control messages, and they do not specify how to effectively reduce the power in many different network environments. This means the amount of power spent by the device is very dependent on the implementations of individual device-vendors, and undesirable paging loss may happen according to the channel conditions. To reduce unnecessary power usage and the risk of paging loss, this paper proposes the effective frequency/BS selection algorithm applicable to a mobile device operating in the power saving mode, which serves the device with better BS based on the tracking for channel variation. This algorithm consists of the channel estimation phase during each paging listening interval, the tracking phase for the measured results, the frequency reselection phase based on the tracking activity, and the preferred BS reselection phase. Thus the proposed method can improve the paging performance while the device is moving in the network. Also the simulation result shows that the presented scheme is superior to other candidates in energy efficiency due to the channel-adaptive frequency/BS selection.

A Hybrid Adaptive Security Framework for IEEE 802.15.4-based Wireless Sensor Networks

  • Shon, Tae-Shik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.597-611
    • /
    • 2009
  • With the advent of ubiquitous computing society, many advanced technologies have enabled wireless sensor networks which consist of small sensor nodes. However, the sensor nodes have limited computing resources such as small size memory, low battery life, short transmission range, and low computational capabilities. Thus, decreasing energy consumption is one of the most significant issues in wireless sensor networks. In addition, numerous applications for wireless sensor networks are recently spreading to various fields (health-care, surveillance, location tracking, unmanned monitoring, nuclear reactor control, crop harvesting control, u-city, building automation etc.). For many of them, supporting security functionalities is an indispensable feature. Especially in case wireless sensor networks should provide a sufficient variety of security functions, sensor nodes are required to have more powerful performance and more energy demanding features. In other words, simultaneously providing security features and saving energy faces a trade-off problem. This paper presents a novel energy-efficient security architecture in an IEEE 802.15.4-based wireless sensor network called the Hybrid Adaptive Security (HAS) framework in order to resolve the trade off issue between security and energy. Moreover, we present a performance analysis based on the experimental results and a real implementation model in order to verify the proposed approach.

A 23.52µW / 0.7V Multi-stage Flip-flop Architecture Steered by a LECTOR-based Gated Clock

  • Bhattacharjee, Pritam;Majumder, Alak;Nath, Bipasha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.220-227
    • /
    • 2017
  • Technology development is leading to the invention of more sophisticated electronics appliances that require long battery life. Therefore, saving power is a major concern in current-day scenarios. A notable source of power dissipation in sequential structures of integrated circuits is due to the continuous switching of high-frequency clock signals, which do not carry any information, and hence, their switching is eliminated by a method called clock gating. In this paper, we have incorporated a recent clock-gating style named Leakage Control Transistor (LECTOR)-based clock gating to drive a multi-stage sequential architectures, and we focus on its performance under three different process corners (fast-fast, slow-slow, typical-typical) through Monte Carlo simulation at 18 GHz clock with 90 nm technology. This gating is found to be one of the best gated approaches for multi-stage architectures in terms of total power consumption.

Design and Implementation of Automatic Installation System for PDA (휴대 정보터미널을 위한 애플리케이션 자동설치 시스템의 설계 및 구현)

  • 나승원;오세만
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.3
    • /
    • pp.165-176
    • /
    • 2003
  • Instead of existing cell phones, PDAs are observed as leading wireless Internet devices recently Numerous applications are developed by extended usage of PDAs and it should be installed appropriately according to devices. Furthermore, when battery is discharged, all data stored in RAM(Random Access Memory) becomes obsolete. So it should be recovered or reinstalled from flash memory, backup media or something. In this paper, we present an automatic application installation system(PAIS : PDA Automatic Installation System) to solve problems that users have to install applications by themselves whenever it is necessary. With this system, users feel comfortable by saving time and effort to install each applications and application development companies save cost needed to make materials illustrating installation process. Consequently PAIS may flourish wireless Internet business.

  • PDF

Design of Sensor Network Security Model using Contract Net Protocol and DEVS Modeling (계약망 프로토콜과 DEVS 모델링을 통한 센서네트워크 보안 모델의 설계)

  • Hur, Suh Mahn;Seo, Hee Suk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.41-49
    • /
    • 2008
  • Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes. Such attacks by compromised sensors can cause not only false alarms but also the depletion of the finite amount of energy in a battery powered network. In order to reduce damage from these attacks, several security solutions have been proposed. Researchers have also proposed some techniques to increase the energy-efficiency of such security solutions. In this paper, we propose a CH(Cluster Header) selection algorithm to choose low power delivery method in sensor networks. The CNP(Contract Net Protocol), which is an approach to solve distribution problems, is applied to choose CHs for event sensing. As a result of employing CNP, the proposed method can prevent dropping of sensing reports with an insufficient number of message authentication codes during the forwarding process, and is efficient in terms of energy saving.

Component Sizing and Evaluating Fuel Economies of a Hybrid Electric Scooter (하이브리드 이륜차의 동력원 용량 매칭 및 연비평가)

  • Lee, Dae-In;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.98-105
    • /
    • 2012
  • Recently, most of the countries started to regulate the emission of vehicle because of the global warming. The engine scooter is also one of the factor which cause the pollution. The hybrid system of a vehicle has many advantages such as fuel saving and emission reduction. The purpose of this study is to choose optimal size of engine, motor and battery for hybrid scooter system using Dynamic programming. The dynamic programming is an effective method to find an optimal solution for the complicated nonlinear system, which contains various constraints of control variables. The power source size of hybrid scooter was chosen through the backward simulator using dynamic programming. From the analysis, we choose the optimal size of each power source. To verify the optimal size of the power source, the Forward simulation was carried out. As a result, the fuel efficiency of hybrid scooter has significantly increased in comparison with that of engine scooter.

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION-PART II: CONTROL STRATEGY

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.785-793
    • /
    • 2006
  • The topic of this study is the control strategy of a mild hybrid electric vehicle (HEV) equipped with a continuously variable transmission (CVT). A brief powertrain and vehicle configuration is introduced followed by the control strategy of the HEV with emphasis on two key parts. One of them is an ideal operating surface (IOS) that operates the CVT powertrain optimally from the viewpoint of the tank-to-wheel efficiency. The other is a charge sustaining energy management to maintain the battery state of charge (SOC) within an appropriate level. The fuel economy simulation results of the HEV over standard driving cycles were compared with those of the baseline vehicle. Depending on the driving cycle, 1.3-20% fuel saving potential is predicted by the mild hybridisation using an integrated starter alternator (ISA). The detailed energy flow analysis shows that the majority of the improvement comes from the idle stop function and the benefits for electrical accessories. Additionally, the differences between the initial and the final SOC are in the range $-1.0{\sim}+3.8%$ in the examined cycle.

Development of Low Power Driven Inner Tap Inspection System capable of Wireless Communication with Video Equipment (영상기기와 무선통신이 가능한 저전력 구동의 이너탭 검사시스템 개발)

  • Ahn, Sung-Su
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.649-658
    • /
    • 2018
  • In this paper, we propose a mechanical contact inner tap inspection system that can inspect the defect of the inner tap immediately after inner tap is processed within the machining center. The inspection module has the collet chuck structure, so it can mounted on the main spindle of the machining center during inspection. It was developed with a focus on inspection for tap having 20 mm depth which is primarily fabricated in automotive parts and has a double sided PCB-type control system including sensing function based on Zigbee module, micom and IR sensor for wireless transmission of measured data with low power operation, and also a battery for supplying electric power. The current consumption is 46.8mA in the inspection operation mode and 0.0268mA in the power saving mode for 3.7V of the applied power source, so that 30,000 times or more inspection can be performed with assumed 5 seconds inspection time for one tap. Experiments in test jig system and actual machining center confirm that the proposed inner tap inspection system can be applied to the batch process of simultaneous inspection after tapping in the machining center.

A Study on the Posture Control of a Humanoid Robot (휴머노이드 로봇의 자세 제어에 관한 연구)

  • Kim Jin-Geol;Lee Bo-Hee;Kong Jung-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.77-83
    • /
    • 2005
  • This paper deals with determination of motions of a humanoid robot using genetic algorithm. A humanoid robot has some problems of the structural instability basically. So, we have to consider the stable walking gait in gait planning. Besides, it is important to make the smoothly optimal gait for saving the electric power. A mobile robot has a battery to move autonomously. But a humanoid robot needs more electric power in order to drive many joints. So, if movements of walking joints don't maintain optimally, it is difficult for a robot to have working time for a long time. Also, if a gait trajectory doesn't have optimal state, the expected life span of joints tends to be decreased. To solve these problems, the genetic algorithm is employed to guarantee the optimal gait trajectory. The fitness functions in a genetic algorithm are introduced to find out optimal trajectory, which enables the robot to have the less reduced jerk of joints and get smooth movement. With these all process accomplished by a PC-based program, the optimal solution could be obtained from the simulation. In addition, we discuss the design consideration for the joint motion and distributed computation of the humanoid, ISHURO, and suggest its result such as the structure of the network and a disturbance observer.

A High Frequency-Link Bidirectional DC-DC Converter for Super Capacitor-Based Automotive Auxiliary Electric Power Systems

  • Mishima, Tomokazu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper presents a bidirectional DC-DC converter suitable for low-voltage super capacitor-based electric energy storage systems. The DC-DC converter presented here consists of a full-bridge circuit and a current-fed push-pull circuit with a high frequency (HF) transformer-link. In order to reduce the device-conduction losses due to the large current of the super capacitor as well as unnecessary ringing, synchronous rectification is employed in the super capacitor-charging mode. A wide range of voltage regulation between the battery and the super capacitor can be realized by employing a Phase-Shifting (PS) Pulse Width Modulation (PWM) scheme in the full-bridge circuit for the super capacitor charging mode as well as the overlapping PWM scheme of the gate signals to the active power devices in the push-pull circuit for the super capacitor discharging mode. Essential performance of the bidirectional DC-DC converter is demonstrated with simulation and experiment results, and the practical effectiveness of the DC-DC converter is discussed.