• Title/Summary/Keyword: Battery of Life

Search Result 612, Processing Time 0.027 seconds

A New Sort of Study upon Devices Life Span Advancement Techniques with Wireless Sensor Communities

  • KRISHNA, KONDA HARI;NAGPAL, TAPSI;BABU, Y. SURESH
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.51-56
    • /
    • 2022
  • In the previous years, Wireless Sensor Networks (WSNs) have increased expanding consideration from both the clients and scientists. It is utilized as a part of different fields which incorporate ecological, social insurance, military and other business applications. Sensor hubs are battery fueled so vitality imperatives on hubs are extremely strict. At the point when battery gets released, sensor hub will get detached from remaining system. This outcomes in connection disappointment and information misfortune. In a few applications battery substitution is likewise impractical. Consequently, vitality proficient strategies ought to be outlined which will upgrade lifetime of system and precise information exchange. In this paper, diverse wellsprings of vitality dissemination are recorded trailed by vitality effective systems to improve lifetime of the system.

Design and Analysis of a Power Control and Monitoring System for Buoy

  • Oh, Jin-Seok;Jo, Kwan-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1068-1074
    • /
    • 2009
  • This paper describes a study for the buoy which should be operated by a stand-alone power system. The field of this study is related to a power system operated by two batteries which depends on the load power. The fluctuation of the voltages makes the life cycle of the battery shorten. The control algorithm has been proposed for reducing the voltage pulsation of the battery by operation strategy according to using purpose such as main or sub power supply system. The power system with battery is separated two parts and this has been proved through a simulation and a sea experiment. In order for the experiment to use a wireless monitoring system has been installed in buoy. This paper shows an excellent test result of wireless monitoring system for buoy.

Quantitative Analysis of Power Consumption for Low Power Embedded System by Types of Memory in Program Execution (저전력 임베디드 시스템을 위한 프로그램이 수행되는 메모리에 따른 소비전력의 정략적인 분석)

  • Choi, Hayeon;Koo, Youngkyoung;Park, Sangsoo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1179-1187
    • /
    • 2016
  • Through the rapid development of latest hardware technology, high performance as well as miniaturized size is the essentials of embedded system to meet various requirements from the society. It raises possibilities of genuine realization of IoT environment whose size and battery must be considered. However, the limitation of battery persistency and capacity restricts the long battery life time for guaranteeing real-time system. To maximize battery life time, low power technology which lowers the power consumption should be highly required. Previous researches mostly highlighted improving one single type of memory to increase ones efficiency. In this paper, reversely, considering multiple memories to optimize whole memory system is the following step for the efficient low power embedded system. Regarding to that fact, this paper suggests the study of volatile memory, whose capacity is relatively smaller but much low-powered, and non-volatile memory, which do not consume any standby power to keep data, to maximize the efficiency of the system. By executing function in specific memories, non-volatile and volatile memory, the quantitative analysis of power consumption is progressed. In spite of the opportunity cost of all of theses extra works to locate function in volatile memory, higher efficiencies of both power and energy are clearly identified compared to operating single non-volatile memory.

The Development of the Low Power Consumption and Long Life Battery using a Galvanic Series (저전력형 반영구적인 갈바니 전원장치 개발)

  • Bae, Jeong-Hyo;Kim, Dae-Kyeong;Ha, Tae-Hyun;Lee, Hyun-Goo;Choi, Sang-Bong;Jeong, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3201-3204
    • /
    • 2000
  • In general, analog tester or strip chart recorder have been used to measure the corrosion potential of structures such as gas pipelines, oil pipelines, hot water pipelines, power cables etc. Recently, automatic digital data logger substitutes for these manual equipment because using these manual equipments are tedious and time consuming. However, digital data logger also has a shortcoming, that is, short measuring time because of the short lifetime of batteries. Therefore, we developed a long lifetime and low power loss battery taking advantage of galvanic series. In this paper, the results of development for power generator using two metals and DC/DC converter in order to obtain enough voltage for the operation of digital data logger. DC/DC converter operates with 0.5[V]. Its output voltage is 3.5[V] and output current is from 60[mAh] to 1,200[mAh].

  • PDF

Design of RE-DC conversion circuit for the batteryless Transponder

  • Jin, In-su;Yang, Kyeong-rok;Ryu, Hyoung-sun;Kim, Yang-mo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1001-1004
    • /
    • 2000
  • RFID system is applied to identify, locate and track people, cars, animals. In RFID system, the passive transponder without battery has some benefits than active transponder, such as no restriction in battery exchange and in battery’s life. But it needs auxiliary RF-DC conversion circuit. RF-DC conversion circuit originated from Wireless Power Transmission (WPT). In this paper, RF-DC conversion circuit consists of a microstrip patch antenna and impedance matching circuit, Cock-croft Walton circuit. And RF-DC conversion circuits have two kinds of T-type and Cross-type impedance matching circuits.

  • PDF

NiH2 battery voltage limit circuit design for satellite (인공위성용 니켈-수소 축전지 충전전압 제한회로 구현)

  • Choi, Young-Jin;Wang, Jin-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.376-378
    • /
    • 1995
  • A voltage-temperature limit circuit for the Ni-H2 battery is designed and analyzed for the maximum and the minimum voltage deviations at the worst case of the EOL(end of life). It is demonstrated that the magnitude of voltage deviations due to circuit device tolerances are kept less than 0.3v at the worst case. The maximum and the minimum battery voltages are simulated for the environmental temperature range of $0^{\circ}C-30^{\circ}C$ by using MATHCAD. They are 34.67v and 29.851v, respectively.

  • PDF

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

Development of a 100kW charging infra for electrical bus (전기버스용 100kW급 충전인프라 개발)

  • Lee, Chung-Woo;Oh, Seung-Hun;Lee, Yun-Jae;Choi, Eun-Sik;Kang, Byung-Kwan;Ryu, Kang-Yeul;Kim, Hee-Jung
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.117-118
    • /
    • 2013
  • Recent global warming to the promotion of electric vehicles (EV), plug-in hybrid (PEV), including the next generation of cars and solar power, wind power and other renewable energy, and next-generation power grid (smart grid) are getting attention. In addition, the system utilizes the battery life in the industry and the convenience of a variety of social systems, economics, environmental impact, and the inherent potential to change significantly, and you can not walk into a next-generation industrial strategy and the need increases more and more present, and its early commercialization In order to do this, as well as a key energy source, the battery charger for charging efficiency technologies is essential. In this paper, fast charge multiple battery modules and optional modules that can charge distribution charge will be introduced.

  • PDF

Study of Improvement Life and Electrochemical Characteristics for Lithium/sulfur Battery using Porous Carbon Sphere (다공성 구형 탄소를 이용한 리튬/유황 전지의 수명개선 및 전기화학특성 연구)

  • Hur, Sung Kyu;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.42-51
    • /
    • 2021
  • Dissociation into Lithium-polysulfide electrolyte due to repeated cycles during the Lithium/Sulfur battery reaction is a major problem of reduced battery lifespan. We searched for a porous carbon with a large specific surface area that infiltrated S to prevent liquid Lithium-polysulfide from being dissolved in electrolyte, induce adsorption of Lithium-polysulfide, and further increase conductivity. In order to obtain porous carbon spheres with a large specific surface area, the carbon spheres of 1939 m2/g were raised to 2200 m2/g through additional KOH treatment. In addition, through heat treatment with S, a carbon sulfur compound containing 75 wt% of S was fabricate and material analysis was conducted on the possibility of using the cathode material. The electrochemical characteristics of the Reference (622; sulfur: 60%, conductive material: 20%, binder: 20%) pouch cell and the pouch cell made using 75wt% of carbon sulfur compound were analyzed. 75wt% of carbon sulfur pouch cell showed a 20% increase in lifespan and 10% improvement in C-rate compared to the Reference pouch cell after 50 cycles.

Energy Balance Analysis of Electrical Power System for Communication Satellite (통신방송위성 전력시스템의 Energy Balance 해석)

  • Choi Jae-dong;Koo Cheol-hea
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.81-84
    • /
    • 2001
  • In the power system of a satellite, solar array and a battery have directly impact on the life time of the satellite, and their stable operation is decided by whether their states are in the steady state operation or not. In this study, solar array capacity and battery characteristics of proposed communication satellite are designed and simulation is conducted according to the operation mode. Each operation mode is classified as the normal and worst case modes, respectively. The normal mode is analyzed under daylight and the eclipse with the EHT burn, and the worst case modes which have solar cell circuit failure, and battery cell failure are analyzed too.

  • PDF