• Title/Summary/Keyword: Battery R&D

Search Result 232, Processing Time 0.027 seconds

The Study of Evaluation Methods of Electrolyte for Li/SO2Cl2 Battery (Li/SO2Cl2 전지용 전해액의 평가 방법 연구)

  • Roh, Kwang Chul;Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Ko, Young-Ok;Lee, Jeong-Do;Chung, Kwang-il;Shin, Dong-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.67-71
    • /
    • 2011
  • The cathodic active material of $Li/SO_2Cl_2$ battery is $SO_2Cl_2$, which is the solvent of an electrolyte. It is referred to as a catholyte, a compound word of cathode and electrolyte. As the battery discharges, the catholyte burns out. And thus, the characteristics of the $SO_2Cl_2$ in the battery determine the capacity. In addition, the transition minimum voltage (TMV) and the voltage delay deviation of $Li/SO_2Cl_2$ battery are due to the passivation film formed by the reaction between an electrolyte and Li. Impurities in the electrolyte, such as moisture or heavy metal ions, will accelerate the growth of the passivation film. Therefore, a technology must be established to purify an electrolyte and to ensure the effectiveness of the purification method. In this research, $LiAlCl_4/SO_2Cl_2$ was manufactured using $AlCl_3$ and LiCl. Its concentration, the amount of moisture, and the metal amount were evaluated using an ionic conductivity meter, a colorimeter, and FT-IR.

State of the Art and Research Trends on Electrode Materials of Thermal Batteries (열전지 기술 현황과 전극재료 개발 동향)

  • Kang, Seung-Ho;Park, Byung-Jun;Im, Chae-Nam;Cho, Sung-Baek;Cheong, Hae-Won;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.765-770
    • /
    • 2015
  • Thermal batteries are heat-activated primary reserve power sources that use inorganic salt as electrolytes and specially designed to meet extremely long or environmentally severe storage requirements. They are primarily used to deliver high power for relatively short periods in such applications as fuzes, missiles, ordnance and other military applications. In this paper, we describe a general overview and research trends on electrode materials for thermal batteries.

Model-based Analysis of Cell-to-Cell Imbalance Characteristic Parameters in the Battery Pack for Fault Diagnosis and Over-discharge Prognosis (배터리 팩 내부 과방전 사전 진단을 위한 모델기반 셀 간 불균형 특성 파라미터 분석 연구)

  • Park, Jinhyeong;Kim, Jaewon;Lee, Miyoung;Kim, Byoung-Choul;Jung, Sung-Chul;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.381-389
    • /
    • 2021
  • Most diagnosis approaches rely on historical failure data that might not be feasible in real operating conditions because the battery voltage and internal parameters are nonlinear according to various operating conditions, such as cell-to-cell configuration and initial condition. To overcome this issue, the estimator and the predictor require integrated approaches that consider comprehensive data, with the degradation process and measured data taken into account. In this paper, vector autoregressive models (VAR) with various parameters that affect overdischarge to the cell in the battery pack were constructed, and the cell-to-cell parameters were identified using an adaptive model to analyze the influence of failure prognosis. The theoretical analysis is validated using experimental results in terms of the feasibility and advantages of fault prognosis.

Effects of Initial Slug Design on the Earring of a Rectangular Battery Case During Impact Extrusion (충격압출 공정에서 초기 슬러그 디자인이 사각 배터리 케이스의 이어링에 미치는 영향 분석)

  • Lim, J. H.;Choi, S.;Chung, W. J.;Shin, J. H.;Lee, J.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.425-430
    • /
    • 2015
  • In the current paper, the effects of initial slug design on the earring of an Al rectangular battery case manufactured by impact extrusion were studied. During impact extrusion, non-uniform metal flow between the long and the short sides of the battery case leads to earring, which is subsequently trimmed. Process parameters such as friction, aspect ratio of the battery case, the die shape and the forming temperature tend to induce earring because they cause greater non-uniform metal flow. Large aspect ratio of the battery case and high friction between slug and die can greatly affect the earring of a rectangular battery case. To make a rectangular battery case without earring, it is necessary to control metal flow uniformly during impact extrusion. One of the ways to reduce the earring is to control the metal flow of slug at the initial upsetting stage. To analyze the effects of the initial slug design on earring, FE analysis was conducted using DEFORM 3D. Two types of initial slug designs were evaluated where volume was removed along either the width or thickness directions. The results show that the initial slug design can be effective in adjusting the uniformity of metal flow.

A Study on the Recovery of Lantanum and Neodymium from Waste Battery Through the Recycling Process (폐 전지로부터 재활용 과정을 통한 란타넘, 네오디뮴 회수에 관한 연구)

  • Chae, Byungman;Lee, Seokhwan;Kim, Deuk-Hyeon;Seo, Eun-Ju;Kim, Hyunil;Lee, Seunghwan;Lee, Sangwoo
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.116-121
    • /
    • 2020
  • In this paper, the recycling of waste Ni-MH battery by-products for electric vehicle is studied. Although rare earths elements still exist in waste Ni-MH battery by-products, they are not valuable as materials in the form of by-products (such as an insoluble substance). This study investigates the recovering of rare earth oxide for solvent extraction A/O ratio, substitution reaction, and reaction temperature, and scrubbing of the rare earth elements for high purity separation. The by-product (in the form of rare earth elements insoluble powder) is converted into hydroxide form using 30% sodium hydroxide solution. The remaining impurities are purified using the difference in solubility of oxalic acid. Subsequently, Yttrium is isolated by means of D2EHPA (Di-[2-ethylhexyl] phosphoric acid). After cerium is separated using potassium permanganate, lanthanum and neodymium are separated using PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester) and it is calcinated at a temperature of 800 ℃. As a result of the physical and chemical measurement of the calcined lanthanum and neodymium powder, it is confirmed that the powder is a microsized porous powder in an oxide form of 99.9% or more. Rare earth oxides are recovered from Ni-MH battery by-products through two solvent extraction processes and one oxidation process. This study has regenerated lanthanum and neodymium oxide as a useful material.

A study of ALP for elevator (엘리베이터용 정전시 비상구출장치에 관한 연구)

  • Jang, C.H.;Lee, G.H.;Hur, H.J.;Lee, J.G.;Kim, H.J.;Choi, C.S.;Jeong, J.T.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2013-2015
    • /
    • 1997
  • Elevator stops emergently when power failures happen during operation. In that case, the passenger should wait with frightened in the car untill they are rescued by repair man or power resumes. This paper describes an automatic landing device for power-failure(ALP) that consists of UPS and battery charge control system. The excellence of the ALP operation is verified by experiments in elevator test tower.

  • PDF

The Application and Experimental Verification of 2MVA BESS for Power Smoothing of Wind Turbine (풍력발전 출력 안정화를 위한 2MVA급 BESS 적용 및 실증시험)

  • Kim, Yun-Hyun;In, Dong-Seok;Kim, Sang-Hyun;Kim, Tae-Hyeong;Kim, Kwang-Seob;Kwon, Byung-Ki;Lee, Duk-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.540-541
    • /
    • 2012
  • 본 논문에서는 신재생에너지원인 1.5MW 풍력발전기가 연계된 계통에 2MVA/500kWh BESS(Battery Energy Storage System)를 적용하여 실증시험을 수행한 결과를 기술하였다. 풍력발전기의 출력 전력을 측정하여 제어 알고리즘에 따라 충, 방전 지령값을 계산하는 상위제어기 EMS와 BESS를 연동하여 운전하였다. 이를 통해 BESS를 이용하여 풍력발전기의 출력이 심하게 변동하여도 계통으로 송전되는 전력을 안정적으로 제어할 수 있음을 검증하였다.

  • PDF

A SOC Estimation using Kalman Filter for Lithium-Polymer Battery (칼만 필터를 이용한 리튬-폴리머 배터리의 SOC 추정)

  • Jang, Ki-Wook;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • The SOC estimation method based on Kalman Filter(KF) requires the accurate battery model to express the electrical characteristics of the battery. However, the performance of KF SOC estimator can hardly be improved because of the nonlinear characteristic of the battery. This paper proposes the new KF SOC estimator of Lithium-Polymer Battery(LiPB), which considers the variation of parameters based on the hysteresis effect, the magnitude of SOC, the charging/discharging mode and the on/off load conditions. The proposed SOC estimation method is verified with the PSIM simulation combined the experimental data of the LiPB.

A Study on Mechanical Properties Evaluation of Fiber-reinforced Plastic Cellular Injection-molded Specimens for the Development of High-strength Lightweight MHEV Battery Housing Molding Technology (고강성 경량 MHEV 배터리 하우징 성형기술개발을 위한 섬유강화 플라스틱 발포 사출 시험편의 기계적 물성평가에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.55-60
    • /
    • 2023
  • The fiber-reinforced plastics and cellular injection molding process can be used to efficiently reduce the weight of battery housing components of mild hybrid electronic vehicles(MHEV) made of metal. However, the fiber orientation of fiber-reinforced plastics and the growth of foaming cells are intertwined during the injection molding process, so it is difficult to predict the mechanical properties of products in the design process. Therefore, it is necessary to evaluate the mechanical properties of the materials prior to the efficient stiffness design of the target product. In this study, a study was conducted to evaluated the mechanical properties of fiber reinforced cellular injection-molded specimens. Two types of fiber-reinforced plastics that can be used in the target product were evaluated for changes in tensile properties of cellular injection-molded specimens depending on the foaming ratio and position from the injection gate. The PP and PA66 specimens showed a decrease of tensile modulus and strength of approximately 30% and 17% depending on the foaming ratio, respectively. Also, the tensile strength decreased approximately 26% and 17% depending on the position from the injection gate, respectively. As a result, it was confirmed that the PP specimens have a significantly mechanical property degradation compared to the PA66 specimens depending on the foaming ratio and position.

Electrochemical Properties of Lithium Anode for Thermal Batteries (열전지용 리튬음극의 전기화학적 특성)

  • Im, Chae-Nam;Yoon, Hyun Ki;Ahn, Tae-Young;Yeo, Jae Seong;Ha, Sang Hyeon;Yu, Hye-Ryeon;Baek, Seungsu;Cho, Jang Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.696-702
    • /
    • 2018
  • Recently, the current thermal battery technology needs new materials for electrodes in the power and energy density to meet various space and defense requirements. In this paper, to replace the pellet type Li(Si) anode having limitations of the formability and capacity, electrochemical properties of the lithium anode with high density for thermal batteries were investigated. The lithium anode (Li 17, 15, 13 wt%) was fabricated by mixing the molten lithium and iron powder used as a binder to hold the molten lithium at $500^{\circ}C$. The single cell with 13 wt% lithium showed a stable performance. The 2.06 V (OCV) of the lithium anode was significantly improved compared to 1.93 V (OCV) of the Li(Si) anode. Specific capacities during the first phase of the lithium anode and Li(Si) were 1,632 and $1,181As{\cdot}g^{-1}$, respectively. As a result of the thermal battery performance test at both room and high temperatures, the voltage and operating time of lithium anode thermal batteries were superior to those of using Li(Si) anode thermal batteries. The power and energy densities of Li anode thermal batteries were also remarkably improved.