DOI QR코드

DOI QR Code

Electrochemical Properties of Lithium Anode for Thermal Batteries

열전지용 리튬음극의 전기화학적 특성

  • Im, Chae-Nam (The 4th R&D Institute - 4, Agency for Defense Development) ;
  • Yoon, Hyun Ki (The 4th R&D Institute - 4, Agency for Defense Development) ;
  • Ahn, Tae-Young (The 4th R&D Institute - 4, Agency for Defense Development) ;
  • Yeo, Jae Seong (The 4th R&D Institute - 4, Agency for Defense Development) ;
  • Ha, Sang Hyeon (The 4th R&D Institute - 4, Agency for Defense Development) ;
  • Yu, Hye-Ryeon (The 4th R&D Institute - 4, Agency for Defense Development) ;
  • Baek, Seungsu (The 4th R&D Institute - 4, Agency for Defense Development) ;
  • Cho, Jang Hyeon (The 4th R&D Institute - 4, Agency for Defense Development)
  • 임채남 (국방과학연구소 제4기술연구본부 4부) ;
  • 윤현기 (국방과학연구소 제4기술연구본부 4부) ;
  • 안태영 (국방과학연구소 제4기술연구본부 4부) ;
  • 여재성 (국방과학연구소 제4기술연구본부 4부) ;
  • 하상현 (국방과학연구소 제4기술연구본부 4부) ;
  • 유혜련 (국방과학연구소 제4기술연구본부 4부) ;
  • 백승수 (국방과학연구소 제4기술연구본부 4부) ;
  • 조장현 (국방과학연구소 제4기술연구본부 4부)
  • Received : 2018.04.30
  • Accepted : 2018.08.21
  • Published : 2018.12.10

Abstract

Recently, the current thermal battery technology needs new materials for electrodes in the power and energy density to meet various space and defense requirements. In this paper, to replace the pellet type Li(Si) anode having limitations of the formability and capacity, electrochemical properties of the lithium anode with high density for thermal batteries were investigated. The lithium anode (Li 17, 15, 13 wt%) was fabricated by mixing the molten lithium and iron powder used as a binder to hold the molten lithium at $500^{\circ}C$. The single cell with 13 wt% lithium showed a stable performance. The 2.06 V (OCV) of the lithium anode was significantly improved compared to 1.93 V (OCV) of the Li(Si) anode. Specific capacities during the first phase of the lithium anode and Li(Si) were 1,632 and $1,181As{\cdot}g^{-1}$, respectively. As a result of the thermal battery performance test at both room and high temperatures, the voltage and operating time of lithium anode thermal batteries were superior to those of using Li(Si) anode thermal batteries. The power and energy densities of Li anode thermal batteries were also remarkably improved.

최근 열전지는 우주 및 국방분야에서 활용하기 위하여 고출력 및 고에너지 밀도의 새로운 전극재료가 요구되는 실정이다. 본 논문에서는 성형성과 용량의 한계를 가지는 펠릿 타입의 리튬-실리콘 합금(Li(Si)) 음극을 대체하기 위하여 고밀도를 가지는 리튬음극을 제조하고, 단위전지 및 열전지의 전기화학적 성능에 미치는 영향을 고찰하였다. 리튬음극은 $500^{\circ}C$에서 안정적인 작동을 위하여 철 분말을 바인더로 사용하였고 리튬 중량별(17, 15, 13 wt%) 단위전지 성능평가를 통해 리튬 13 wt%에서 안정적인 성능을 확인하였다. 또한 리튬음극을 사용한 단위전지의 개회로전압이 2.06 V로 Li(Si) 음극 개회로전압 1.93 V에 비해 약 0.1 V 이상 높게 나타났고, first phase에서 리튬음극의 비용량은 $1,632As{\cdot}g^{-1}$로 Li(Si) 음극의 비용량 $1,181As{\cdot}g^{-1}$에 비해 약 1.4배 정도 성능이 향상됨을 확인하였다. 리튬음극을 적용한 열전지를 상온 및 고온 성능시험 결과를 통하여 Li(Si) 음극 열전지에 비해 전압 및 작동시간 등이 탁월하며, 출력특성 및 에너지밀도가 획기적으로 향상됨을 확인하였다.

Keywords

GOOOB2_2018_v29n6_696_f0001.png 이미지

Figure 1. The photography of Li/Fe ingot (a) and Li anode (b).

GOOOB2_2018_v29n6_696_f0002.png 이미지

Figure 4. SEM image of Fe powder.

GOOOB2_2018_v29n6_696_f0003.png 이미지

Figure 2. A single cell test assembly.

GOOOB2_2018_v29n6_696_f0004.png 이미지

Figure 6. Single cell discharge performances of Li Anode by Li contents.

GOOOB2_2018_v29n6_696_f0005.png 이미지

Figure 7. Single cell discharge comparison for Li anode and Li(Si) anode.

GOOOB2_2018_v29n6_696_f0006.png 이미지

Figure 8. Total polarization comparison for Li anode and Li(Si) anode single cell.

GOOOB2_2018_v29n6_696_f0007.png 이미지

Figure 9. Discharge performance of Li anode and Li(Si) anode thermal battery at room temperature.

GOOOB2_2018_v29n6_696_f0008.png 이미지

Figure 10. Discharge performance of Li anode and Li(Si) anode thermal battery at high temperature (+ 63 ℃).

GOOOB2_2018_v29n6_696_f0009.png 이미지

Figure 3. The design of Φ75 × L165 mm thermal battery (a) and Φ75 × L130 mm thermal battery (b).

GOOOB2_2018_v29n6_696_f0010.png 이미지

Figure 5. SEM image of Li (17 wt%) anode (a), Li 15 wt% (b), and Li 13 wt% (c).

Table 1. Properties of the Electrodes

GOOOB2_2018_v29n6_696_t0001.png 이미지

Table 2. Discharge Results of Li Anode and Li(Si) Anode Single Cells

GOOOB2_2018_v29n6_696_t0002.png 이미지

Table 3. Discharge Results of Li Anode and Li(Si) Anode Thermal Batteries at Room and High Temperature

GOOOB2_2018_v29n6_696_t0003.png 이미지

References

  1. R. A. Guidotti and P. Masset, Thermally activated ("thermal") battery technology. Part 1: An overview, J. Power Sources, 161, 1443-1449 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.013
  2. Y. S. Choi, S. B. Cho, and Y. S. Lee, Effect of the addition of carbon black and carbon nanotube to $FeS_{2}$ cathode on the electrochemical performance of thermal battery, J. Ind. Eng. Chem., 20, 3584-3589 (2014). https://doi.org/10.1016/j.jiec.2013.12.052
  3. Y. S. Choi, H. R. Yu, H. W. Cheong, S. B. Cho, and Y. S. Lee, Effects of pyrite ($FeS_{2}$) particle sizes on electrochemical characteristics of thermal batteries, Appl. Chem. Eng., 25, 161-166 (2014). https://doi.org/10.14478/ace.2013.1123
  4. D. E. Reisner, T. D. Xiao, H. Ye, J. Dai, R. A. Guidotti, and F. W. Reinhardt, Thermal-sprayed thin film cathodes for thermal battery, J. New Mater. Electrochem. Syst., 2, 279-282 (1999).
  5. A. G. Gevorkyan, R. Cohen, and O. Raz, Recent advances in thin film based thermal batteries, 47th Power Sources Conference, 390-392, Orlando, FL, USA (2016).
  6. D. Harney, Thin film thermal batteries, 44th Power Sources Conference, 669-671, Las Vegas, NV, USA (2010).
  7. R. A. Guidotti and P. Masset, Thermally activated ("thermal") battery technology. Part 4: Anode materials, J. Power Sources, 183, 388-398 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.090
  8. G. C. Bowser and J. R. Moser, Molten metal anode, US Patent 3,930,888 (1976).
  9. D. Machodo, S. Golan, I. Londner, and E. Jacobsohn, Fe-Li-Al anode composite and termal battery containing the same, US Patent 7,354,678 (2008).
  10. J. D. Briscoe, E. Durliat, F. Salver-Disma, and I. Stewart, Comparison of the different anode technologies used in thermal batteries, 42nd Power Sources Conference, 117-120, Philadelphia, PA, USA (2006).
  11. A. J. Clark, C. Thaler, I. Stewart, and J. Reid, Advances in high-energy-density immobilized lithium anode thermal batteries, 39th Power Sources Conference, June, Cherry Hill, USA (2000).
  12. J. R. Sweeney, I. Mckirdy, R. Comrie, and I. Stewart, Some advances in the application of thermal battery technology, Aerospace Energetic Equipment Conference, Avignon, France (2004).
  13. Y. S. Choi, H. R. Yu, and H. W. Cheong, Electrochemical properties of a lithium-impregnated metal foam anode for thermal batteries, J. Power Sources, 276, 102-104 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.103
  14. V. Klasons and C. M. Lamb, Thermal batteries, in: D. Linden and T. B. Reddy (eds.), Handbook of Batteries, 21.1-21.22, McGraw-Hill, USA (2002).
  15. P. Masset and R. A. Guidotti, Thermal activated ("thermal") battery technology part IIIa: FeS2 cathode material, J. Power Sources, 177, 509-609 (2008).
  16. S. Fujiwara, M. Inaba, and A. Tasaka, New molten salt systems for high temperature molten salt batteries: Ternary and quaternary molten salt systems based on LiF-LiCl, LiF-LiBr, and LiCl-LiBr, J. Power Sources, 196, 4012-4018 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.009
  17. P. Masset, S. Schoeffert, J. Y. Poinso, and J. C. Poignet, LiF-LiCl-LiI vs. LiF-LiBr-KBr as molten salt electrolyte in thermal batteries, J. Electrochem. Soc., 152(2), A405-A410 (2005). https://doi.org/10.1149/1.1850861
  18. S. Fujiwara, M. Inaba, and A. Tasaka, Now molten salt systems for hig-temperature molten salt batteries: LiF-LiCl-LiBr-based quaternary systems, J. Power Sources, 195(22), 7691-7700 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.032