• Title/Summary/Keyword: Battery Performance

Search Result 1,628, Processing Time 0.03 seconds

A Study on Selective Composite Patch for Light Weight and Quality Improvement of Battery Module (배터리 모듈의 경량화 및 품질 향상을 위한 선택적 복합재료 패치에 관한 연구)

  • Lee, Seung-Chan;Ha, Sung Kyu
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • In this study, in order to improve the quality issue and component characteristics of the battery module, which is one of the major parts of the electric vehicle. The structure is reinforced by using the composite material and the mechanism structure optimization of Hybrid concept which can overcome the disadvantages of single material was performed and the performance was compared. For this purpose, figure out the main design variables of composite materials according to Classical Laminated Plate Theory (CLPT) and the algorithm for predicting composite material properties have been studied. Based on the mechanical properties of the designed composite materials, finite element analysis (FEM) and the performance of the battery module was verified. Consequently, according to the verification result, Hybrid Battery Module reinforced with Selective Composite Patch can reduce the weight by 30% and reduce the product thickness by 32.5% compared with the existing Al battery module and proved the merit of Hybrid structure such as maintaining impact performance.

Performance Evaluation of Battery Remaining Time Estimation Methods According to Outlier Data Processing Policies in Mobile Devices (모바일 기기에서 이상치 데이터 처리 정책에 따른 배터리 잔여 시간 예측 기법의 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1078-1090
    • /
    • 2022
  • The distribution patterns of battery usage time data per battery level are able to affect the performance of estimating battery remaining time in mobile devices. Outliers may mainly affect the estimation performance of statistical regression methods. In this paper, we propose a software framework that detects and processes outliers to improve the estimation performance of statistical regression methods. The proposed framework first detects outliers that degrade the estimation performance. The proposed framework replaces outliers with smoothed data. The difference between an outlier and its replaced data will be properly distributed into individual data. Finally, individual data are reinforced to improve the estimation performance. The numerical results obtained by experimenting the proposed framework confirmed that it yielded good performance of estimating battery remaining time.

Optimization of Shift Control to Improve Driving Efficiency of Battery Electric Vehicles with Two-speed Transmission (2단 변속기 적용 전기차의 구동 효율 향상을 위한 변속 제어 최적화)

  • Taekho Chung;Younghee Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.62-67
    • /
    • 2023
  • Recently, the global automobile industry is aiming for a transition from internal combustion locomotives to zero-emission vehicles. Electric vehicles powered by battery energy can operate at peak performance and improve fuel economy by applying multiple motors or multi-speed transmissions. In order to design a two-speed transmission, it is necessary to evaluate and analyze the application system and performance of electric vehicles. In this study, control performance optimization of a twostage battery electric vehicle equipped with an AMT-based automatic transmission was performed and performance according to control pattern changes was analyzed. In order to improve the operating efficiency of the motor, the shift control that sets the optimal operating point according to the vehicle speed and required torque was derived from the motor efficiency map. The performance of battery energy consumption and transmission loss energy according to the hysteresis interval was analyzed and optimized. The hysteresis interval applied to the optimal shift map acted as a factor in reducing the frequency and loss of shifts. It has been shown that keeping the hysteresis interval at about 4 km/h can reduce energy consumption while reducing the number of shifts.

Optimal Design for Dynamic Resistance Equalization Technique to Minimize Power Loss and Equalization Error

  • La, Phuong-Ha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.50-52
    • /
    • 2019
  • Dynamic resistance equalization is a viable technique to balance SOC of cells in a parallel-connected battery configuration due to high equalization performance, simplicity and low-cost. However, an inappropriate design of the equalization resistor can degrade the equalization performance and increase the power loss. This paper proposes an optimization process to design the equalization resistors to minimize power loss and equalization error. The simulation results show that the optimally designed resistor significantly enhance the performance in comparison with the conventional fixed-resistor equalization.

  • PDF

A Study on the Rail Vehicle Applications and Increase the Capacity of Lithium Polymer Batteries (리튬폴리머 축전지의 철도차량 적용 및 용량증대에 관한 연구)

  • Cho, Kyu-Hwa;Kang, Seung-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.340-345
    • /
    • 2016
  • Railway vehicle battery is supplying the power required for the initial start-up of the train, in the event of a fault in the vehicle, or catenary for supplying emergency power is one of the components are very important. Currently, the railway vehicles such as nickel-cadmium batteries are being used [1,2]. Ni-Cd batteries as a battery installed in the railway vehicles have a strong corrosion resistance is included, The charge-discharge performance is significantly degraded in cold weather, there is a danger of deterioration or explosion. Train accidents have been caused a lot of damage due to rapid deterioration and cracking of the battery and memory due to the effect of Ni-Cd batteries. In order to solve the problems, There is no risk of degradation, deterioration and leakage, cracking and exploding. maintenance is simple and applied measures proposed to apply Lithium Polymer battery of high performance. In addition, the lack of capacity problems identified by testing the different special systems is replaced by a 70Ah lithium-polymer battery is possible without changing the batteries of 50Ah caused by installing additional equipment in existing older trains were applied to the vehicle.

Modeling of Lithium Battery Cells for Plug-In Hybrid Vehicles

  • Shin, Dong-Hyun;Jeong, Jin-Beom;Kim, Tae-Hoon;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.429-436
    • /
    • 2013
  • Online simulations are utilized to reduce time and cost in the development and performance optimization of plug-in hybrid electric vehicle (PHEV) and electric vehicles (EV) systems. One of the most important factors in an online simulation is the accuracy of the model. In particular, a model of a battery should accurately reflect the properties of an actual battery. However, precise dynamic modeling of high-capacity battery systems, which significantly affects the performance of a PHEV, is difficult because of its nonlinear electrochemical characteristics. In this study, a dynamic model of a high-capacity battery cell for a PHEV is developed through the extraction of the equivalent impedance parameters using electrochemical impedance spectroscopy (EIS). Based on the extracted parameters, a battery cell model is implemented using MATLAB/Simulink, and charging/discharging profiles are executed for comparative verification. Based on the obtained results, the model is optimized for a high-capacity battery cell for a PHEV. The simulation results show good agreement with the experimental results, thereby validating the developed model and verifying its accuracy.

Performance Estimation Based on 4D Lookup Table Interpolating and Unit Cell Discharge Tests for Thermal Battery (4D Lookup Table Interpolating을 이용한 단위 전지 방전 시험 기반 열전지 성능 예측)

  • Park, Byeong June;Kim, Ji Youn;Ha, Sang Hyeon;Cho, Jang Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.393-400
    • /
    • 2017
  • For comparison to the Li-ion battery, evaluating a thermal battery must consider additional variables. The first one is the temperature difference between the battery and its unit cell. Thermal batteries and their unit cells have a temperature difference that is caused by the thermal battery activation mechanism and its shape. The second variable is the electrochemical reaction steps. Most Li-ion batteries have a constant electrochemical reaction at the electrode, and battery voltage is affected when the concentration of Li ions is changed. However, a thermal battery has several steps in its electrochemical reaction, and each step has a different potential. In this study, we used unit cell discharge tests based on interpolating a 4D lookup table to estimate the performance of a thermal battery. From the test results, we derived an estimation algorithm by interpolating the table, which is queried from specified profile groups. As a result, we found less than a 5 percent difference between estimation and experiment at the 1.3 V cut-off time.

One-Dimension Thermal Modeling of NiMH Battery for Thermal Management of Electric Vehicles (전기 자동차용 니켈수소 배터리 1차원 열전달 모델링)

  • Han, Jaeyoung;Park, Jisoo;Yu, Sangseok;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.227-234
    • /
    • 2014
  • Fuel consumption rates of electric vehicles strongly depend on their battery performance. Because the battery performance is sensitive to the operating temperature, temperature management of the battery ensures its performance and durability. In particular, the temperature distribution among modules in the battery pack affects the cooling characteristics. This study focuses on the thermal modeling of a battery pack to observe the temperature distribution among the modules. The battery model is a prismatic model of 10 NiMH battery modules. The thermal model of the battery consists of heat generation, convective heat transfer through the channel and conduction heat transfer among modules. The heat generation is calculated by the electric resistance heat during the charge/discharge state. The model is used to determine a strategy for proper thermal management in Electric vehicles.

An AC Impedance Spectrum Measurement Device for the Battery Module to Predict the Remaining Useful Life of the Lithium-Ion Batteries (리튬배터리의 잔여 유효 수명 추정을 위한 배터리 모듈용 AC 임피던스 스펙트럼 측정장치)

  • Lee, Seung-June;Farhan, Farooq;Khan, Asad;Cho, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.251-260
    • /
    • 2020
  • A growing interest has emerged in recycling used automobile batteries into energy storage systems (ESSs) to prevent their harmful effects to the environment from improper disposal and to recycle such resources. To transform used batteries into ESSs, composing battery modules with similar performance by grading them is crucial. Imbalance among battery modules degrades the performance of an entire system. Thus, the selection of modules with similar performance and remaining life is the first prerequisite in the reuse of used batteries. In this study, we develop an instrument to measure the impedance spectrum of a battery module to predict the useful remaining life of the used battery. The developed hardware and software are used to apply the AC perturbation to the used battery module and measure its impedance spectrum. The developed instrument can measure the impedance spectrum of the battery module from 0.1 Hz to 1 kHz and calculate the equivalent circuit parameters through curve fitting. The performance of the developed instrument is verified by comparing the measured impedance spectra with those obtained by a commercial equipment.

Performance Characteristics of Lead Acid Battery with the Contents of Sodium Perborate Tetrahydrate (SPT) in Positive Plate Active Material (과붕산나트륨 양극 활물질 첨가에 따른 차량용 납산배터리 성능 특성)

  • Lim, Tae Seop;Kim, Sung Jun;Kim, Sang Dong;Yang, SeungCheol;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.426-434
    • /
    • 2020
  • The performance characteristics of a lead acid battery are investigated with the content of Sodium Perborate Tetrahydrate (SPT, NaBO3·4H2O) in a positive plate active material. SPT, which reacts with water to form hydrogen peroxide, is applied as an additive in the positive plate active material to increase adhesion between the substrate (positive plate) and the active material; this phenomenon is caused by a chemical reaction on the surface of substrate. A positive plate with the increasing content of SPT is prepared to compare its properties. It is confirmed that the oxide layer increases at the interface between the substrate and the active material with increasing content of SPT; this is proven to be an oxide layer through EDS analysis. Battery performance is confirmed: when SPT content is 2.0 wt%, the charging acceptance and high rate discharge properties are improved. In addition, the lifetime performance according to the Standard of Battery Association of Japan (SBA) S0101 test is improved with increasing content of SPT.