• 제목/요약/키워드: Battery Optimal Design

검색결과 109건 처리시간 0.029초

기후조건 및 실부하패턴을 고려한 태양광 시스템 최적 운전기법 (Photovoltaic System Operation Optimal Technique Considering Climate Condition and Residential Loads Pattern)

  • 문희성;최규영;김종수;이영국;이병국
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2385-2390
    • /
    • 2009
  • Based on the detailed analysis of output characteristics of PV array and residential load usage pattern, a design method to calculate optimal battery capacity for stand-alone PV generation systems is proposed. And also, according to power flow Actual irradiation and temperature data are analyzed to compose a PV array simulator and also six representative home appliances are electrically modeled for load simulator, along with 24hours usage pattern. The surplus and insufficient power can be calculated from the proposed simulation platform, so that selection of an optimal battery capacity can be possible. The theoretical analysis and design process will be explained, along with informative simulation results.

연료전지 과도 특성 모델링 기반 FCEV용 배터리 용량 최적 설계 (Optimal Design of Battery of Fuel Cell Electric Vehicle Based on Fuel Cell Dynamic Characteristic Model)

  • 고정민;김종수;이영국;이병국
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1714-1719
    • /
    • 2009
  • In this paper, methodology of battery optimal designing is proposed. Fuel cell model including dynamic characteristic is developed and load model is produced by considering driving schedule. Using these models, required energy of load and supplying energy from fuel cell are analyzed by comparing simulation results. Also parameter of fuel cell model is changed variously and battery capacity is calculated in each cases. And methode of battery optimal designing is presented by regarding dynamic characteristic of fuel cell.

유전 알고리즘을 활용한 전기 자동차 배터리 방열성능 향상을 위한 가이드 베인 최적설계 (Optimal Design of Guide Vane for Improvement of Heat Removal Performance of Electric Vehicles Battery Using Genetic Algorithm)

  • 송지훈;김윤제
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.55-61
    • /
    • 2022
  • Along with global environmental issues, the size of the electric vehicle market has recently skyrocketed. Various efforts have been made to extend mileage, one of the biggest problems of the electric vehicles, and development of batteries with high energy densities has led to exponential growth in mileage and performance. However, proper thermal management is essential because these high-performance batteries are affected by continuous heat generation and can cause fires due to thermal runaway phenomena. Therefore, thermal management of the battery is studied through the optimal design of the guide vanes, while utilizing the existing battery casing to ensure the safety of the electric vehicles. A battery from T-company, one of a manufacturer of the electric vehicles, was used for the research, and the commercial CFD software, ANSYS CFX V20.2, was used for analysis. The guide vanes were derived through optimal design based on a genetic algorithm with flow analysis. The optimized guide vanes show improved heat removal performance.

Design of Three-winding Coupled Inductor for Minimum Current Ripple in Battery Chargers

  • Kang, Taewon;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.195-196
    • /
    • 2015
  • This paper investigates the design of coupled inductor for minimum inductor current ripple in rapid traction battery charger systems. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor which corresponds to a minimum inductor ripple current becomes -0.5, i.e. a complete inverse coupling without leakage inductance, as the steady-state duty ratio operating point approaches 1/3 or 2/3. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the steady-state duty ratio operating point approaches either zero or one. Coupled inductors having optimal coupling factor can minimize the ripple current of inductor and battery current resulting in a reliable and efficient operation of battery chargers.

  • PDF

원통형 이차전지의 저항용접 품질 향상을 위한 공정 최적화 (Process Optimization for Improving Resistance Welding Quality of Cylindrical Secondary Battery)

  • 정지선;박순서;김지호;권혁무;홍성훈;이민구
    • 품질경영학회지
    • /
    • 제48권1호
    • /
    • pp.69-86
    • /
    • 2020
  • Purpose: This study aims to determine the optimal conditions for the spot welding process that mechanically connects the case of a cylindrical secondary battery and the negative tab. Methods: We use 33 factorial design to derive the optimal conditions for the spot welding process. The pulling strength, the cross-sectional area of nugget, and the shock test life are selected as response variables, which can represent the resistance welding quality. The input variables are selected as the welding time, welding voltage, and pressure, which are the controllable factors in the spot welding process. Results: The main effects of welding time and welding voltage and the interaction effect of welding time and welding voltage are significant. Conclusion: The optimal conditions for the spot welding process to mechanically join the negative electrode tab of the cylindrical secondary battery and the battery case are developed. The result shows that the pulling strength is increased by 44% compared to before improvement under optimal conditions.

전기자동차 탑재형 충전기용 부하직렬공진형 컨버터의 최적 공진주파수 설계 (Design of Optimal Resonant Frequency for Series-Loaded Resonant DC-DC Converter in EVs On-Board Battery Charger Application)

  • 오창열;김종수;이병국
    • 전력전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.77-84
    • /
    • 2012
  • This paper describes the process of optimal resonant frequency design with full-bridge series-loaded resonant dc-dc converter in a high efficiency 3.3 kW on-board battery charger application for Electric Vehicles and Plug-in Hybrid Electric Vehicles. The optimal range of resonant frequency and switching frequency used for ZVS are determined by considering trade-off between loss of switching devices and resonant network with size of passive/magnetic devices. In addition, it is defined charging region of battery, the load of on-board charger, as the area of load by deliberating the characteristic of resonant. It is verified the designed frequency band by reflecting the defined area on resonant frequency.

Optimal Design for Dynamic Resistance Equalization Technique to Minimize Power Loss and Equalization Error

  • La, Phuong-Ha;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.50-52
    • /
    • 2019
  • Dynamic resistance equalization is a viable technique to balance SOC of cells in a parallel-connected battery configuration due to high equalization performance, simplicity and low-cost. However, an inappropriate design of the equalization resistor can degrade the equalization performance and increase the power loss. This paper proposes an optimization process to design the equalization resistors to minimize power loss and equalization error. The simulation results show that the optimally designed resistor significantly enhance the performance in comparison with the conventional fixed-resistor equalization.

  • PDF

자동차용 DC Current Sensor의 자장해석 및 코어 최적형상 설계에 관한 연구 (A Study on the Magnetic Field Analysis and Optimal Core Design of DC Current Sensor for Vehicles)

  • 이희성;박종민;김춘식;김성관
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.74-83
    • /
    • 2009
  • Recently, usage of electric and electronic system for car increases rapidly. Consequently power monitoring supplied to the system is essential for management and controlling. Generally, battery status is monitored through measuring and diagnosing the current measurement method utilizing Hall Effect. Therefore, in this paper, we analysed magnetic field to develop the solution of DC current sensor using Hall Effect which is the core of design and development. By analysing the magnetic field by FEM using Maxwell 3D software, the location of the highest output current and stable part in the Hall IC sensor was shown. Also, the optimal core design of DC current sensor using parametric and Simplex method was presented. A car battery charge and discharge process dependant on time effect on the changing of magnetic field was simulated and compared to the result from the experiment result of actual vehicle.

배송용 무인항공기를 위한 최적 배터리팩 설계 툴 (Optimal Battery Pack Design Tool for the Delivery UAV)

  • 정성훈;정헌
    • 한국융합학회논문지
    • /
    • 제8권6호
    • /
    • pp.219-226
    • /
    • 2017
  • 무인항공기 산업이 성숙해짐에 따라 촬영, 정찰, 구조 등 많은 분야에 무인항공기가 적용되고 있으며, 이로 인하여 신속한 무인항공기의 하드웨어의 설계, 특히 배터리팩의 설계가 필요하게 되었다. 수직이착륙 형태의 배송용 무인항공기의 편리한 배터리팩 구성 설계를 위한 자동 배터리팩 설계 툴을 개발하였다. 전류, 전압 패턴, 여러 셀 사양, 원하는 배터리팩 전압 등의 입력을 하면, 자동 배터리팩 설계 툴이 균질 셀 또는 이종 셀들을 결합하여 최소 중량과 최대 용량을 갖는 배터리팩을 계산한다. 또한 이 툴은 설계된 배터리팩 구성의 사용에 따른 용량 감소 경향을 예측할 수 있다.

BTMS에서 열전소자를 이용한 공랭식 냉각 시스템 설계 (Design of Air-cooling System Using Thermoelectric Element on BTMS)

  • 김경민;홍대기;문대원
    • 반도체디스플레이기술학회지
    • /
    • 제23권3호
    • /
    • pp.76-84
    • /
    • 2024
  • This paper proposes a method of improving cooling efficiency by applying a Peltier Element to a heat pipe of an air-cooled cooling system of a Battery Thermal Management System for high-speed cooling of a vehicle battery cell. In addition, when the temperature sensor detects the heat generation of the battery cell, the Peltier Element and cooler can be operated to quickly reduce the temperature of the cell. For optimal thermal management, we built an ATmega128A-based Battery Thermal Management System and used KiCAD tool to model and design the cooling system structure. Finally, the experiment verified the high efficiency improvement of cooling performance by comparing the difference between cooling efficiency and cooling performance at room temperature over time for vehicles adopting the existing air cooling method.

  • PDF