• Title/Summary/Keyword: Battery Lifetime

Search Result 215, Processing Time 0.025 seconds

A Novel Battery State of Health Estimation Method Based on Outlier Detection Algorithm

  • Piao, Chang-hao;Hu, Zi-hao;Su, Ling;Zhao, Jian-fei
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1802-1811
    • /
    • 2016
  • A novel battery SOH estimation algorithm based on outlier detection has been presented. The Battery state of health (SOH) is one of the most important parameters that describes the usability state of the power battery system. Firstly, a battery system model with lifetime fading characteristic was established, and the battery characteristic parameters were acquired from the lifetime fading process. Then, the outlier detection method based on angular distribution was used to identify the outliers among the battery behaviors. Lastly, the functional relationship between battery SOH and the outlier distribution was obtained by polynomial fitting method. The experimental results show that the algorithm can identify the outliers accurately, and the absolute error between the SOH estimation value and true value is less than 3%.

Design Space Exploration of EEPROM-SRAM Hybrid Non-volatile Counter Considering Energy Consumption and Memory Endurance (에너지 소비 및 메모리 내구성을 고려한 EEPROM-SRAM 하이브리드 비휘발성 카운터의 설계 공간 탐색)

  • Shin, Donghwa
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.201-208
    • /
    • 2016
  • Non-volatile counter is a counter that maintains the value without external power supply. It has been used for the applications related to warranty issues to count and record certain events such as power cycles, operating time, hard resets, and timeouts. It has been conventionally implemented with volatile memory-based counter and battery backup or non-volatile memory such as EEPROM. Both of them have a lifetime issue due to the limited lifetime of the battery and the endurance of the non-volatile memory cells, which incurs significant redundancy in design. In this paper, we introduce a hybrid architecture of volatile (SRAM) and non-volatile memory (EEPROM) cells to achieve required lifetime of the non-volatile counter with smaller cost. We conduct a design space exploration of the proposed hybrid architecture with the parameters of various kinds of non-volatile memories. The analysis result shows that the proposed hybrid non-volatile counter can extend the lifetime up to 6 times compared to the battery-backup volatile memory-based implementation.

An Adaptive Power-Controlled Routing Protocol for Energy-limited Wireless Sensor Networks

  • Won, Jongho;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.135-141
    • /
    • 2018
  • Wireless sensor networks (WSN) are composed of a large number of sensor nodes. Battery-powered sensor nodes have limited coverage; therefore, it is more efficient to transmit data via multi-hop communication. The network lifetime is a crucial issue in WSNs and the multi-hop routing protocol should be designed to prolong the network lifetime. Prolonging the network lifetime can be achieved by minimizing the power consumed by the nodes, as well as by balancing the power consumption among the nodes. A power imbalance can reduce the network lifetime even if several nodes have sufficient (battery) power. In this paper, we propose a routing protocol that prolongs the network lifetime by balancing the power consumption among the nodes. To improve the balance of power consumption and improve the network lifetime, the proposed routing scheme adaptively controls the transmission range using a power control according to the residual power in the nodes. We developed a routing simulator to evaluate the performance of the proposed routing protocol. The simulation results show that the proposed routing scheme increases power balancing and improves the network lifetime.

A New Sort of Study upon Devices Life Span Advancement Techniques with Wireless Sensor Communities

  • KRISHNA, KONDA HARI;NAGPAL, TAPSI;BABU, Y. SURESH
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.51-56
    • /
    • 2022
  • In the previous years, Wireless Sensor Networks (WSNs) have increased expanding consideration from both the clients and scientists. It is utilized as a part of different fields which incorporate ecological, social insurance, military and other business applications. Sensor hubs are battery fueled so vitality imperatives on hubs are extremely strict. At the point when battery gets released, sensor hub will get detached from remaining system. This outcomes in connection disappointment and information misfortune. In a few applications battery substitution is likewise impractical. Consequently, vitality proficient strategies ought to be outlined which will upgrade lifetime of system and precise information exchange. In this paper, diverse wellsprings of vitality dissemination are recorded trailed by vitality effective systems to improve lifetime of the system.

A Scheme for Reuse of Residual Energy in a Multi-cell Battery System (다중전지 시스템에서 잔류 에너지의 재활용 방법)

  • Yun, Woong-Jin;Baek, Je-In
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.21-27
    • /
    • 2009
  • As portable electronic systems being used more often, it becomes a more important issue to lengthen the lifetime of the power battery of the system, for instance, by developing batteries of a higher efficiency. A simple as well as practical method to lengthen the lifetime is to use multiple batteries that are connected in parallel. But in this paper we present a new idea in using multiple batteries, with which the residual energy of the battery can be used in the sense of recycling. The idea is based on a usual phenomenon that a battery cell that has been used until its voltage has dropped below a reference level may still have some residual energy, due to which the voltage can recover when the cell takes a rest for a while. As a practical realization scheme of this idea, a multi-cell configuration method with a cell selection switch is introduced, and its feasibility has been examined by performing experimental observations on the behavior of battery discharge. It has been found that the lifetime of an Alkaline primary battery cell can be lengthened approximately by one or two hours with the proposed method.

Design of Voltage Equalizer of Li-ion Battery Pack (리튬-이온 배터리팩의 전압안정화회로 설계)

  • 황호석;남종하;최진홍;장대경;박민기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.187-193
    • /
    • 2004
  • For a power source of usual electronic devices such as PDA, smart phone, UPS and electric vehicle, the battery made of serially connected multiple cells is generally used. In this case, if there are some unbalanced among cell voltages, the total lifetime and the total capacity of the battery are limited to a lower value. To maintain a balanced condition in cells, an effective method of regulating the cell voltage in indispensable. In this paper, we propose the design of a balancing circuit for electronic appliances. The balancing system was controlled by a micro-controller which enables to implement the balancing action during charging period. Proposed method has been verified by the experiment using the charger and recorder. The experimental results show that the individual battery equalization can improve battery capacity and battery lifetime and performance through an extended operational time.

A Study on Methodology of Optimal Operation of BESS and Diesel Generators in a Microgrid Considering Efficiency Characteristics According to the Power Ratios of Diesel Generators (디젤발전기의 출력비에 따른 효율을 고려한 마이크로그리드에서의 BESS와 디젤발전기의 최적 운영 기법에 관한 연구)

  • Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.539-546
    • /
    • 2016
  • With the growing interest of microgrid systems all over the world, many studies on microgrid operation are being carried out. The battery energy storage system(BESS) and the diesel generator are key equipments in the microgrid. In this paper, we analyze the characteristics of fuel consumption according to the power ratio of the diesel generator. Then, the formula to represent the unit cost of generation according to the power ratio of the diesel generator is derived. A new modeling of battery operation is presented considering the lifetime reduction according to increasing the cycles of charge/discharge operation of the battery. The methodology of determining the optimal operation of the battery and the diesel generator is presented by the use of the formula of fuel consumption of the diesel generator and the new modeling of battery operation. It is shown that this optimization methodology can be applied effectively for economical operation of the BESS and the diesel generator of a microgrid by case studies.

Heat transfer analysis in the battery tray for electirc vehicle (전기자동차 배터리 트레이 내에서의 열전달 해석)

  • Lim Jongsoo;shin Dongshin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.651-654
    • /
    • 2002
  • Study of electric vehicle is popular with automobile company. However, battery cooling problem has delayed development of electric vehicle. Lifetime of electric vehicle's battery depends on the cooling effect for the battery tray. One model was simulated by 3-D, steady state, incompressible, k-e turbulent model simulation. It is found that flow inlet, outlet and inlet position are very important design parameters.

  • PDF

Modeling of the lifetime prediction of a 12-V automotive lead-acid battery (차량용 납축전지의 수명 예측 모델링)

  • Kim, Sung Tae;Lee, Jeongbin;Kim, Ui Seong;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.338-346
    • /
    • 2013
  • The conventional lead acid battery is optimized for cranking performance of engine. Recently electric devices and fuel economy technologies of battery have influenced more deep cycle of dynamic behavior of battery. I also causes to reduce battery life-time. This study proposed that aging battery model is focused for increasing of battery durability. The stress factors of battery aging consist of discharge rate, charging time, full charging time and temperature. This paper considers the electrochemical kinetics, the ionic species conservation, and electrode porosity. For prediction of battery life cycle we consider battery model containing strong impacts, corrosion of positive grid and shedding. Finally, we validated that modeling results were compared with the accelerated thermal measurement data.