• 제목/요약/키워드: Battery Heat Management

검색결과 31건 처리시간 0.025초

전기자동차 파우치형 배터리 열관리 시스템의 냉각성능 향상에 대한 연구 (A Study on the Cooling Performance Improvement of Pouch Battery Thermal Management System for Electric Vehicles)

  • 신정훈;이준경
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.715-724
    • /
    • 2022
  • In many electric vehicles, large-capacity pouch-type lithium-ion battery packs are mainly used to increase the mileage on a single charge. The lithium ion battery should be operated within the temperature range of 25℃ to 40℃ because the battery performance can be rapidly deteriorated due to an increase in internal temperature. Battery thermal management system (BTMS) can give the suitable temperature conditions to battery by water cooling method. In this research, the heat transfer characteristics (the battery temperature distributions and the water flow characteristics) were analyzed by CFD method to investigate the thermal performance of the cooling plate with 4-pass water flow structure. Moreover, the effect of the presence of fins between the battery cell was identified. The fins made smooth temperature distributions between the battery cells due to the heat spreading and lower the average battery cells temperature.

전기 자동차용 니켈수소 배터리 1차원 열전달 모델링 (One-Dimension Thermal Modeling of NiMH Battery for Thermal Management of Electric Vehicles)

  • 한재영;박지수;유상석;김성수
    • 대한기계학회논문집B
    • /
    • 제38권3호
    • /
    • pp.227-234
    • /
    • 2014
  • 전기 자동차의 연료 소모량은 배터리 성능에 의존한다. 배터리의 성능은 작동온도에 민감하기 때문에, 배터리 온도 관리는 성능과 내구성을 보장한다. 특히, 배터리 팩에서의 모듈의 온도 분포는 냉각특성에 영향을 미친다. 이 연구는 모듈 사이의 온도 분포를 확인 할 수 있는 배터리 열적 모델링에 초점을 두었다. 본 연구의 배터리 모델은 NiMH 각형 모델이며, 10개의 모듈로 구성되어졌다. 배터리 열 모델은 열 발생, 채널을 통과하는 대류 열 전달 그리고 모듈 사이의 전도 열 전달로 구성되었다. 배터리 내에서 발생되는 열발생 모델은 충/방전 동안의 전기적인 저항열에 의해 계산되어 진다. 모델은 전 하이브리드 자동차의 운전 동안 적절한 열관리의 전략을 결정한다.

CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석 (Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation)

  • 심창휘;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.

전기 자동차 가상 플랫폼용 배터리 모델 개발 및 검증 (Development of a Battery Model for Electric Vehicle Virtual Platform)

  • 김선우;조종민;한재영;김성수;차한주;유상석
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.486-493
    • /
    • 2015
  • In this paper, a battery model for electric vehicle virtual platform was developed. A battery model consisted of a battery cell model and battery thermal management system. A battery cell model was developed based on Randles equivalent circuit model. Circuit parameters in the form of 3D map data was obtained by charge-discharge experiment of Li-Polymer battery in various temperature condition. The developed battery cell model was experimentally verified by comparing voltages. Thermal management system model was also developed using heat generator, heat transfer and convection model, and cooling fan. For verification of the developed battery model in vehicle level, the integrated battery model was applied in to EV(electric vehicle) virtual platform, and virtual driving simulation using UDDS velocity profile was conducted. The accuracy of the developed battery model has been verified by comparing the simulation results from EV platform with the experimental data.

유전 알고리즘을 활용한 전기 자동차 배터리 방열성능 향상을 위한 가이드 베인 최적설계 (Optimal Design of Guide Vane for Improvement of Heat Removal Performance of Electric Vehicles Battery Using Genetic Algorithm)

  • 송지훈;김윤제
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.55-61
    • /
    • 2022
  • Along with global environmental issues, the size of the electric vehicle market has recently skyrocketed. Various efforts have been made to extend mileage, one of the biggest problems of the electric vehicles, and development of batteries with high energy densities has led to exponential growth in mileage and performance. However, proper thermal management is essential because these high-performance batteries are affected by continuous heat generation and can cause fires due to thermal runaway phenomena. Therefore, thermal management of the battery is studied through the optimal design of the guide vanes, while utilizing the existing battery casing to ensure the safety of the electric vehicles. A battery from T-company, one of a manufacturer of the electric vehicles, was used for the research, and the commercial CFD software, ANSYS CFX V20.2, was used for analysis. The guide vanes were derived through optimal design based on a genetic algorithm with flow analysis. The optimized guide vanes show improved heat removal performance.

전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰 (A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola)

  • 최철영;최웅철
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

리튬이온 배터리의 열관리가 전기자동차 주행거리에 미치는 영향 (Effect of Thermal Management of Lithium-Ion Battery on Driving Range of Electric Vehicle)

  • 박철은;유세웅;정영환;김기범
    • 한국산학기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.22-28
    • /
    • 2017
  • 전기자동차에 사용되는 리튬이온 배터리의 성능은 배터리 온도에 따라 큰 차이를 보인다. 본 논문에서는 유한차분법을 이용하여 배터리의 발열량에 따른 배터리의 온도변화를 평가하고, 배터리의 충전량, 내부저항 및 전압변화를 조사하였다. 이 배터리 모델을 1차원 해석 프로그램인 AMESim과 연동하여 전기자동차가 NEDC 모드로 주행 시, 배터리의 온도 변화에 따른 전기자동차의 주행거리를 산출하였다. 배터리는 온도가 $25^{\circ}C$ 이하로 감소하면 내부저항이 증가하기 때문에 발열량이 증가하여 주행거리는 줄었다. 또한, 배터리의 온도가 $25^{\circ}C$ 이상이 되면, 배터리의 충전량이 감소하여 배터리의 성능이 떨어지고 그 결과로 주행거리가 줄었다. 배터리의 성능을 최적으로 유지할 수 있는 온도인 $25^{\circ}C$를 기준으로 배터리의 온도가 $-20^{\circ}C$$45^{\circ}C$일 때, 전기자동차의 주행거리는 각각 33%와 1.8% 감소하였다. 배터리의 최적 온도를 유지하기 위해 효율적인 배터리 열관리를 통하여 저온에서는 가열, 고온에서는 냉각이 이루어져야 한다. 해석 결과 외기온이 $-20^{\circ}C$인 경우 500 W의 열을 공급해주어야 하며, 외기온이 $45^{\circ}C$ 경우에는 냉방을 통해 250 W의 열을 방출해줌으로써 배터리 구동의 최적 온도인 $25^{\circ}C$를 유지할 수 있다.

Nickel/Metal Hydride 전지의 열관리기술 개발 (Thermal Management of a Nickel/Metal Hydride Battery)

  • 김준범
    • 공업화학
    • /
    • 제8권4호
    • /
    • pp.667-672
    • /
    • 1997
  • 고용량 Nickel/Metal hybride 전지의 온도 거동을 3차원 유한요소법 software인 NISA를 사용하여 해석하였다. 전지 내부의 열전도에는 미분형 에너지 수지식을, 외부 대기와의 접촉면은 대류 열전달 방식을 사용하였다. 전지 온도에 영향을 미치는 요소인 열발생량과 대류 열전달계수에 대한 실험을 행하였고, 이 결과로부터 일반식을 도출하였다. 금속 재질의 cooling fin을 사용하므로써 급속한 충전이나 방전시 야기될 수 있는 온도 상승을 상당 부분 방지할 수 있었다. 전지 외벽에 열전도도가 낮고 얇은 절연물질을 부착하여도 최고온도의 상승에 미치는 영향은 미미하였다.

  • PDF

2.3 kW급 전기자동차 배터리팩용 냉각 장치의 열전달 특성에 관한 해석적 연구 (Numerical Analysis of Heat Transfer Characteristics of Cooling System for 2.3 kW EV Battery Pack)

  • 성동민;박용석;성홍석;서정세
    • 한국기계가공학회지
    • /
    • 제21권6호
    • /
    • pp.44-49
    • /
    • 2022
  • The improvement in the battery performance and life using a battery thermal management system directly affects the improvement in the performance, life, and energy efficiency of electric vehicles. Therefore, this study numerically analyzed the heat exchange processes between the coolant inside the cooling plate channel and the heat generated by the battery. The cooling performance was analyzed based on the average temperature, temperature uniformity, and the maximum and minimum temperature differences of the battery. A performance difference existed depending on the coolant inlet temperature but showed the same tendency of cooling performance according to the shape of each plate's channel. Type 1 showed the best results in terms of battery temperature uniformity, which is the most important measure of battery performance; Type 2 showed the best results in terms of the average temperature of the battery; and Type 3 showed the best results in terms of the maximum and minimum temperature differences of the battery compared with that of the other cooling plates.

전기구동 자동차용 리튬이온 배터리의 고효율 운전을 위한 냉방 및 난방 시스템 설계에 대한 이론적 접근법 (Theoretical approach on the heating and cooling system design for an effective operation of Li-ion batteries for electric vehicles)

  • 김대완;이무연
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.2545-2552
    • /
    • 2014
  • 본 연구에서는 전기구동 자동차에 동력원으로 사용되는 고전압 및 고용량 배터리의 고효율 운전을 위하여 배터리 열관리 시스템 기술을 소개하고 이론적 설계 방법에 소개하고 한다. 이를 위하여 전기구동 자동차의 배터리로 많이 사용되는 리튬이온 배터리의 고효율 운전을 위한 발열 모델링을 제시하였고, 열원의 종류에 따른 냉방 및 난방 시스템 설계를 에너지 평형식을 이용하여 부하를 계산하였다. 특히, 리튬이온 배터리의 발열 모델링을 이용하여 충전 및 방전 시 발열 반응열과 혹서기 및 혹한기시 배터리 작동의 최적 온도를 유지하기 위한 냉방과 난방 설계 기술을 제시하였다. 전기구동 자동차 종류에 따라 배터리 사용 비중이 다르기 때문에 효율적인 배터리 열관리를 위하여 계절별 및 작동 모드별 부하에 따른 배터리 열관리 기술을 제안하였다. 또한, 냉방 부하가 가장 큰 여름철 동일 조건에서 외부 공기 온도가 같다고 가정하면 냉방 능력은 수랭식 냉매 방법이 가장 크며 공랭식 방법이 가장 작게 나타난다.