• Title/Summary/Keyword: Battery Drain

Search Result 15, Processing Time 0.021 seconds

A Rendezvous Point Replacement Scheme for Efficient Drone-based Data Collection in Construction Sites (공사현장에서 효율적인 드론 기반 데이터 수집을 위한 랑데부 포인트 교체 기법)

  • Kim, Taesik;Jung, Jinman;Min, Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.153-158
    • /
    • 2017
  • Rendezvous point is used to gather the data from sensor nodes and send to sink node efficiently in selected area. It incurs a unbalanced energy consumption nearby the rendezvous point which can shorten the network life time shortly. Thus, it is very important to select the rendezvous point effectively among all sensors in order to not drain the battery of a sensor node in construction sites. In this paper, we propose a rendezvous point replacement mechanism which considers remaining energy of nodes to prolong the network lifetime. Also, for shortening the distance of drone at the same time, it increases the probability of the near-by drone node becoming rendezvous point. The simulation results show that the proposed scheme can significantly improve the network lifetime and the flight distance compared with the existing LEACH, L-LEACH algorithm.

Distributed Fair Sensing Scheme based on Sensing Zone in Cognitive Radio Ad-hoc Networks (무선 인지 Ad-hoc 네트워크에서 센싱 zone 기반의 분산적 공정 센싱 방법)

  • Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.296-305
    • /
    • 2010
  • Secondary users should sense the licensed spectrum bands in order to protect the primary users from interference. However, periodic and frequent sensing for immediate detection of primary users usually gives rise to much sensing overhead, and thus will quickly drain the battery as well as deteriorate the performance of a secondary user. To overcome such problems, we focus on the method reducing sensing overhead of each secondary user and propose a distributed fair sensing scheme that the multiple users within a certain area, so-called sensing zone, sense the spectrum bands in a fairly distributed manner and share the results among the users within respective sensing zone. The design of the frame structure for the proposal is also demonstrated while considering the sensing requirements for protecting primary users. The performance results by numerical analyses and computer simulations show that our proposed sensing scheme significantly reduces the sensing overhead of each user compared to the conventional sensing scheme and also satisfies the given sensing requirements for primary user protection.

A Framework for Effectively Managing Dynamism of IoT Devices (IoT 디바이스의 동적 특성의 효과적 관리를 위한 프레임워크)

  • La, Hyun Jung;Park, Chun Woo;Kim, Soo Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.8
    • /
    • pp.545-556
    • /
    • 2014
  • Internet of Things (IoT), one of the emerging research areas, is the computing paradigm where various things connect to the network and cooperate with their neighbors to reach common goals. Computing with IoT devices opens up a new array of opportunities for providing value-added smart services and applications to end users. That is, IoT devices play an important role of providing useful services to the users. However, the states of IoT devices are dynamically changed at runtime, which come from their mobility, network connectivity, and a battery drain problem. This dynamism results in difficulties in managing these IoT devices. In this paper, we propose a framework to manage those IoT devices with dynamism. Hence, we first derive issues from IoT devices' dynamism. And, we define a set of requirements to manage the IoT devices and present a framework to manage the device dynamism. The framework is equipped by a device discovery method, a device status monitoring method, a device selection and connection method, and a device replacement method. Finally, we verify the feasibility and effectiveness of the framework through experiments.

Data Dissemination Protocol Considering Target Mobility in Ubiquitous Sensor Network (유비쿼터스 센서 네트워크 환경에서 감지대상의 이동성을 고려한 데이터 전달 프로토콜)

  • Suh Yu-Hwa;Kim Ki-Young;Shin Young-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.311-320
    • /
    • 2006
  • This paper proposes DDTM for USN having end-point mobility. The existing network protocols did not consider target's and sink's mobility. So it requires flooding and path update whenever targets or sinks move. This can lead to drain battery of sensors excessively and decrease lifetime of USN. DDTM is the protocol based on TTDD considering sink's mobility. TTDD provides sink's mobility efficiently by using the grid structure, but it requires the high energy because of reconstructing the grid structure whenever targets move. In this way, the proposed protocol can decrease a consumption of energy, since it reuses the existing grid structure of TTDD, if the target moves in local cell. We compare DDTM with TTDD under the total message and the energy consumption by using a discrete analytical model for cost analysis. Analytical results demonstrated that our proposed protocol can provide the higher efficiency on target's mobility.

Interleaved Hop-by-Hop Authentication in Wireless Sensor Network Using Fuzzy Logic to Defend against Denial of Service Attack (인터리브드 멀티홉 인증을 적용한 무선 센서네트워크에서 퍼지로직을 이용한 서비스 거부 공격에 대한 방어 기법)

  • Kim, Jong-Hyun;Cho, Tac-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • When sensor networks are deployed in open environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False report attack can lead to not only false alarms but also the depletion of limited energy resources in battery powered networks. The Interleaved hop-by-hop authentication (IHA) scheme detects such false reports through interleaved authentication. In IHA, when a report is forwarded to the base station, all nodes on the path must spend energies on receiving, authenticating, and transmitting it. An dversary can spend energies in nodes by using the methods as a relaying attack which uses macro. The Adversary aim to drain the finite amount of energies in sensor nodes without sending false reports to BS, the result paralyzing sensor network. In this paper, we propose a countermeasure using fuzzy logic from the Denial of Service(DoS) attack and show an efficiency of energy through the simulataion result.