• Title/Summary/Keyword: Battery Charging Method

Search Result 200, Processing Time 0.028 seconds

Compensation of Unbalanced Phase Currents in Interleaved Bi-directional Converter with DC Link Current Sensed (직류링크 전류를 이용한 인터리브드 양방향 컨버터의 상전류 불균형 보상 방법)

  • Han, Jungho;Choi, Yuhyon;Song, Joongho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.90-97
    • /
    • 2014
  • This paper presents a compensation method of unbalanced phase currents in interleaved bi-directional converters. Phase currents in interleaved bi-directional converter are apt to be unbalanced due to circuit parameter error and switch operation difference. This problem causes the switch element failure and the reduced efficiency of the converter. Therefore, it is necessary that a certain balance control algorithm is provided in interleaved bi-directional converter system. In this paper, a balance control algorithm based on the circular chain control method is proposed. Further, in order to reduce the number of phase current sensors, this paper shows a simple method in which phase currents can be extracted indirectly through a DC-link current sensor in both charging and discharging modes. The validity and the effectiveness of the proposed phase currents balance control algorithm are illustrated through the simulation results.

Control of a Bidirectional Z-Source Inverter for Electric Vehicle Applications in Different Operation Modes

  • Ellabban, Omar;Mierlo, Joeri Van;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.120-131
    • /
    • 2011
  • This paper proposes two control strategies for the bidirectional Z-source inverters (BZSI) supplied by batteries for electric vehicle applications. The first control strategy utilizes the indirect field-oriented control (IFOC) method to control the induction motor speed. The proposed speed control strategy is able to control the motor speed from zero to the rated speed with the rated load torque in both motoring and regenerative braking modes. The IFOC is based on PWM voltage modulation with voltage decoupling compensation to insert the shoot-through state into the switching signals using the simple boost shoot-through control method. The parameters of the four PI controllers in the IFOC technique are designed based on the required dynamic specifications. The second control strategy uses a proportional plus resonance (PR) controller in the synchronous reference frame to control the AC current for connecting the BZSI to the grid during the battery charging/discharging mode. In both control strategies, a dual loop controller is proposed to control the capacitor voltage of the BZSI. This controller is designed based on a small signal model of the BZSI using a bode diagram. MATLAB simulations and experimental results verify the validity of the proposed control strategies during motoring, regenerative braking and grid connection operations.

A Study on the Removing Method of Hunting by Equalizing Line during Parallel Running of alternator Equipped with converter (컨버터가 내장된 교류발전기 병렬운전중의 헌팅을 균압선을 이용해 제거하는 방법에 관한 연구)

  • 노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.352-359
    • /
    • 1999
  • This paper is a research for removing the alternators hunting which came about during the par-allel running. The four-pole six-phase alternator is equipped with the converter made out of twelve diodes to rectify all the waves. The hunting came about during the battery charging due to the hunting inducing point existed in r. p. m band 1575[rpm-1690[rpm] To remove the hunting inducing point We modified the four-pole six-phase alternator into the four-pole twevel-phase and increased the short-circuit ratio by decreasing the field coil pitch and increasing the field coil turns. But this method has two defects the first the alternator structure becomes complicating and the second the second the alternator equipped with the converter used in general purpose lately such as the car alternator can not be run in parallel wlthout modifying. To remove the defects the equalizing line was connected between the same phase of the alterna-tor to flow the synchronizing current which syncronize the phases of generator electromotive forces by which the alternator can be run in parallel without reference to the hunting inducing point and without modifying.

  • PDF

Optimal Design of Resonant Network Considering Power Loss in 7.2kW Integrated Bi-directional OBC/LDC (7.2kW급 통합형 양방향 OBC/LDC 모듈의 전력 손실을 고려한 공진 네트워크 최적 설계)

  • Song, Seong-Il;Noh, Jeong-Hun;Kang, Cheol-Ha;Yoon, Jae-Eun;Hur, Deog-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • Integrated bidirectional OBC/LDC was developed to reduce the volume for elements, avoid space restriction, and increase efficiency in EV vehicles. In this study, a DC-DC converter in integrated OBC/LDC circuits was composed of an SRC circuit with a stable output voltage relative to an LLC circuit using a theoretical method and simulation. The resonant network of the selected circuit was optimized to minimize the power loss and element volume under constraints for the buck converter and the battery charging range. Moreover, the validity of the optimal model was verified through an analysis using a theoretical method and a numerical analysis based on power loss at the optimized resonant frequency.

A Phase Current Reconstruction Technique Using a Single Current Sensor for Interleaved Three-phase Bidirectional Converters

  • Lee, Young-Jin;Cho, Younghoon;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.905-914
    • /
    • 2016
  • This paper proposes a new phase current reconstruction technique for interleaved three-phase bidirectional dc-dc converters using a single current sensor. In the proposed current reconstruction algorithm, a single current sensor is employed at the dc-link, and the dc-link current information is sampled at either the peak or valley point of the pulse-width modulation (PWM) carriers regularly. From the obtained current information, all phase currents are reconstructed in a single PWM cycle. After that, the digital current controller is applied to achieve current balancing in each phase. Compare to the previous multiple current sensor method, the proposed strategy reduces the number of the current sensors in the interleaved three-phase bidirectional converter as well as reducing potential current sensing error caused by non-ideal characteristics of the multiple current sensors. The effectiveness of the proposed method is verified from the experiments based on a 3kW three-phase bidirectional converter prototype for the automotive battery charging application.

A Study on Automatic Multi-Power Synchronous Transfer Switch using New DFT Comparator (새로운 DFT 비교기를 이용한 자동 다전원 동기절체 스위치에 관한 연구)

  • Kwak, A-Rim;Park, Seong-Mi;Son, Gyung-Jong;Park, Sung-Jun;Kim, Jong-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.423-431
    • /
    • 2022
  • The UPS(Uninterruptible Power Supply) system operates in the battery charging mode when the grid is normal, and in the UPS mode, which is the battery discharge mode when a grid error occurs. Since the UPS must supply the same voltage as the grid to the load within 4 [ms] in case of a grid error, the switching time and power recovery time should be short when controlling the output voltage and current of the UPS, and the power failure detection time is also important. The power outage detection algorithm using DFT(Discrete Fourier Transform) proposed in this paper compares the grid voltage waveform with the voltage waveform including the 9th harmonic generated through DFT using Schmitt trigger to detect power outage faster than the existing power outage monitoring algorithm. There are advantages. Therefore, it is possible to supply instant and stable power when switching modes in the UPS system. The multi-power-applied UPS system proposed in this paper uses DFT, which is faster than the conventional blackout monitoring algorithm in detecting power failure, to provide stable power to the load in a shorter time than the existing power outage monitoring algorithm when a system error occurs. The detection method was applied. The changeover time of mode switching was set to less than 4 [ms], which is 1/4 of the system cycle, in accordance with KSC 4310 regulation, which was established by the Industrial Standards Council on the regulation of uninterruptible power supply. A 10 [kW] UPS system in which commercial voltage, vehicle generator, and auxiliary diesel generator can be connected to each of the proposed transfer devices was constructed and the feasibility was verified by conducting an experiment.

Economic analysis of Frequency Regulation Battery Energy Storage System for Czech combined heat & power plant (체코 열병합발전소 주파수조정용 배터리에너지저장장치 경제성 분석)

  • KIM, YuTack;Cha, DongMin;Jung, SooAn;Son, SangHak
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-78
    • /
    • 2020
  • According to the new climate change agreement, technology development to reduce greenhouse gases is actively conducted worldwide, and research on energy efficiency improvement in the field of power generation and transmission and distribution is underway [1,2]. Economic analysis of the operation method of storing and supplying surplus electricity using energy storage devices, and using energy storage devices as a frequency adjustment reserve power in regional cogeneration plants has been reported as the most profitable operation method [3-7]. Therefore, this study conducted an economic analysis for the installation of energy storage devices in the combined heat and power plant in the Czech Republic. The most important factor in evaluating the economics of battery energy storage devices is the lifespan, and the warranty life is generally 10 to 15 years, based on charging and discharging once a day. For the simulation, the ratio of battery and PCS was designed as 1: 1 and 1: 2. In general, the primary frequency control is designed as 1: 4, but considering the characteristics of the cogeneration plant, it is set at a ratio of up to 1: 2, and the capacity is simulated at 1MW to 10MW and 2MWh to 20MWh according to each ratio. Therefore, life was evaluated based on the number of cycles per year. In the case of installing a battery energy storage system in a combined heat and power plant in the Czech Republic, the payback period of 3MW / 3MWh is more favorable than 5MW / 5MWh, considering the local infrastructure and power market. It is estimated to be about 3 years or 5 years from the simple payback period considering the estimated purchase price without subsidies. If you lower the purchase price by 50%, the purchase cost is an important part of the cost for the entire lifetime, so the payback period is about half as short. It can be, but it is impossible to secure profitability through the economy at the scale of 3MWh and 5MWh. If the price of the electricity market falls by 50%, the payback period will be three years longer in P1 mode and two years longer in P2 and P3 modes.

Study on Multi-switching Sensor-based LED Lighting Control Technology (멀티스위칭 센서기반 LED 조명제어기술에 관한 연구)

  • Jang, Tae-Su;Hong, Geun-Bin;Lee, Dae-Hyoung;Kim, Yong-Kab;Kim, Byun-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.813-814
    • /
    • 2012
  • Recently, along with a development to promote low-carbon green growth, LED control IT convergence technology that can create environmentally-friendly emotional lighting is receiving attention. This is an interface control technology that includes a multi-sensor, switching technology, LED optics, and Internet-based remote lighting control, all of which utilize the lighting characteristics of LED lighting. The proposed system is a study on an intelligent LED control technology, and aims to use a multi-switching sensor in order to control LED discharge current so as to improve energy-charging method, to use a battery's SoC sensor, and to improve efficiency in the winter according to a section.

  • PDF

Efficient Measurement of Wind Velocity and Direction Using Dual Rotor Wind Power Generator in Vessel (Dual Rotor 풍력발전을 이용한 선박에서의 효과적인 풍향 풍속 측정)

  • Choi, Won-Yeon;Park, Gye-Do;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.309-317
    • /
    • 2010
  • This paper proposes an efficient measurement system for the velocity and direction of the wind using the dual rotor wind power generator in vessel. Conventional digital measurement system recognizes the direction and the velocity of the wind using the electric compass or synchronous motor and Vane probe method using hall sensors. But each system has its own short-comings: the synchronous motor has a larger measurement error than the magnetic compass and magnetic compass is weak for the external disturbances such as fluctuation of the vessel. To compensate these short-comings, this paper proposes a new compensation algorithm for the fluctuation errors according to the external interference and the unexpected movement of the vessel along the roll and pitch directions. The proposed system is implemented with the dual compasses and a synchronous motor. The proposed independent power generation system can be operated by itself and can raise the efficiency of the wind power generation systems of 30 ~ 400 W installed along the vertical and horizontal axes. The proposed system also realizes the efficient and reliable power production system by the MPPT algorithm for the real-time recognition of the wind direction and velocity. An advanced switching algorithm for the battery charging system has been also proposed. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

Development of Piezoelectric Energy Harvesting Device and Experiments (압전체를 이용한 에너지 수집 장치 개발 및 실험)

  • Kim, Ki-Young;Kwak, Moon-K.;Kang, Ho-Yong;Kim, Nae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.81-89
    • /
    • 2008
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device for ubiquitous sensor node(USN). The USN needs auxiliary power to lengthen its operational life. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a tip mass and piezoelectric wafer was investigated in detail both theoretically and experimentally. The dynamic model for the addressed system was derived using the assumed mode method. The resulting equations of motion were expressed in matrix form, which had never been developed before. The power output characteristics of the PEH was then calculated and discussed. Various experiments were carried out to investigate the charging characteristics of electrical components. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

  • PDF