• Title/Summary/Keyword: Battery Characteristics

Search Result 978, Processing Time 0.026 seconds

A Study on the Methodology of Determining Proper SOC Operation Range Considering the Economic Characteristics and the Charge and Discharge Voltage Characteristics of BESS (BESS의 경제성과 충방전 전압 특성을 고려한 적정 SOC 운영 영역 설정 기법에 관한 연구)

  • Yoon, Dae-Sik;Choo, Dae-Hyeok;Ki, Byung-Kook;Kim, Joohn-Sheok;Lee, Byung Ha;Chae, Woo-Ku
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.529-536
    • /
    • 2015
  • With the growing interest of microgrid all over the world, many studies on microgrid operation are being carried out. The battery energy storage system(BESS) is a key equipment for effective operation of the microgrid. In this paper, we analyze the characteristics of the charge and discharge output voltage of the battery and the characteristics of the life-span variation and the investment cost when the state-of-charge (SOC) changes. The formulas to represent the quality of the charge and discharge output voltage of the battery and the economics due to the life-span variation and the investment cost according to DOD(Depth of Discharge) are derived. The methodology of determining the proper operation ranges of the battery SOC with varying the weighting of the quality of its charge and discharge output voltage of the battery and the economics due to its life-span variation and the investment cost is presented using these formulas.

Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts

  • Kim, Kyungho;Lee, Sungmin;Im, Chae-Nam;Kang, Seung-Ho;Cheong, Hae-Won;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.364-369
    • /
    • 2017
  • Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with $300{\mu}m$ thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.

A Study on Selective Composite Patch for Light Weight and Quality Improvement of Battery Module (배터리 모듈의 경량화 및 품질 향상을 위한 선택적 복합재료 패치에 관한 연구)

  • Lee, Seung-Chan;Ha, Sung Kyu
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • In this study, in order to improve the quality issue and component characteristics of the battery module, which is one of the major parts of the electric vehicle. The structure is reinforced by using the composite material and the mechanism structure optimization of Hybrid concept which can overcome the disadvantages of single material was performed and the performance was compared. For this purpose, figure out the main design variables of composite materials according to Classical Laminated Plate Theory (CLPT) and the algorithm for predicting composite material properties have been studied. Based on the mechanical properties of the designed composite materials, finite element analysis (FEM) and the performance of the battery module was verified. Consequently, according to the verification result, Hybrid Battery Module reinforced with Selective Composite Patch can reduce the weight by 30% and reduce the product thickness by 32.5% compared with the existing Al battery module and proved the merit of Hybrid structure such as maintaining impact performance.

Study of Cooling Characteristics of 18650 Li-ion Cell Module with Different Types of Phase Change Materials (PCMs) (PCM 종류에 따른 18650 리튬-이온 셀 모듈의 냉각 특성 연구)

  • YU, SIWON;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.622-629
    • /
    • 2020
  • The performance and cost of electric vehicles (EVs) are much influenced by the performance and service life of the Li-ion battery system. In particular, the cell performance and reliability of Li-ion battery packs are highly dependent on their operating temperature. Therefore, a novel battery thermal management is crucial for Li-ion batteries owing to heat dissipation effects on their performance. Among various types of battery thermal management systems (BTMS'), the phase change material (PCM) based BTMS is considered to be a promising cooling system in terms of guaranteeing the performance and reliability of Li-ion batteries. This work is mainly concerned with the basic research on PCM based BTMS. In this paper, a basic experimental study on PCM based battery cooling system was performed. The main purpose of the present study is to present a comparison of two PCM-based cooling systems (n-Eicosane and n-Docosane) of the unit 18650 battery module. To this end, the simplified PCM-based Li-ion battery module with two 18650 batteries was designed and fabricated. The thermal behavior (such as temperature rise of the battery pack) with various discharge rates (c-rate) was mainly investigated and compared for two types of battery systems employing PCM-based cooling. It is considered that the results obtained from this study provide good fundamental data on screening the appropriate PCMs for future research on PCM based BTMS for EV applications.

Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation (리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구)

  • Yoon, Hyun-Ki;Ha, Sang-Hyeon;Lee, Jaein
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

Investigating the Reaction Characteristics of Electrolyte Dimethyl Carbonate(DMC) under Thermal Runaway Conditions of Lithium-Ion Battery (리튬이온배터리 열폭주 조건에서 전해질 Dimethyl Carbonate(DMC) 반응 특성 분석)

  • Jeon, Min-Kyu;Lee, Eun-Song;Yoon, Hong-Sik;Keel, Sang-In;Park, Hyun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1275-1284
    • /
    • 2022
  • This study provides an investigating the electrolyte reaction characteristics during thermal runaway of a lithium-ion battery(LIB). Dimethyl carbonate(DMC) is known as the main substance that makes up the electrolyte. The mono-molecular decomposition characteristics of DMC were derived through numerical analysis. Cobalt oxide can release oxygen under high temperature conditions. Also, DMC is converted to CH4, H2, CO, and CO2. Especially, it was found that the decomposition of the DMC begins at a temperature range of 340-350℃, which dramatically increases the internal pressure of the LIB. In the by-products gases, the molar ratio of CO and CO2 changed according to the molecular structure of DMC and temperature conditions. The correlation of the [CO]/[CO2] ratio according to the temperature during thermal runaway was derived, and the characteristics of the reaction temperature could be estimated using the molar ratio as an indicator. In addition, the oxidation and decomposition characteristics of DMC according to the residence time for each temperature were estimated. When DMC is exposed to low temperature for a long time, both oxidation and decomposition may occur. There is possibility of not only increasing the internal pressure of the LIB, but also promoting thermal runaway. In this study, internal environment of LIB was identified and the reaction characteristics between the active materials of the cathode and electrolyte were investigated.

A Study on the Dynamic Characteristics of Automatic Blister Packaging Machine for Lithium Battery (리튬전지 전용 고속자동 블리스터 포장기 동특성 해석에 관한 연구)

  • 정상화;이경형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.143-148
    • /
    • 2004
  • The blister packaging is applied to many fields in recent years for its merit that it enable consumer to see the products. The most of battery packaging are blister type. However, the lithium battery is dealt with very carefully in packaging because of its explosion. The existing packaging machines lot lithium battery are mostly adapted alkaline packaging machine and their capacity is very inferior to other process, either. In this paper, the virtual prototype of the automatic blister packaging system for lithium battery which has new mechanism is developed and its performance is evaluated.

  • PDF

An Improved Battery Charging Algorithm for PV Battery Chargers (태양광 배터리 충전기를 위한 개선된 충전 알고리즘)

  • Kim, Jung-Hyun;Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.507-514
    • /
    • 2013
  • In this paper, the proposed charging algorithm is converted from the charging mode to compensate the transient state in the solar battery charging system. The maximum power point tracking (MPPT) control methods and the various charging algorithms for the optimal battery charging are reviewed. The proposed algorithm has excellent transient characteristics compare to the previous algorithm by adding the optimal control method to compensate the transient state when the charging mode switches from the constant current mode to the constant voltage mode based on the conventional constant-current constant-voltage (CC-CV) charging algorithm. The effectiveness of the proposed method has been verified by simulations and experimental results.

A Study on Development of 1.5 [kW] Low-cost Battery Charger for NEVs(Neighborhood Electric Vehicles) (NEV용 1.5[kW]급 저가형 충전기 개발에 관한 연구)

  • Lee, Chan-Song;Jeong, Jin-Beom;Lee, Baek-Haeng;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.574-579
    • /
    • 2012
  • In this paper, the battery charger developed which is satisfy by the characteristics of the rapid control and reduce the cost of the charger. analog-digital mixed mode controller developed with dedicated IC for PWM control and low-performance micro-processor is using for the operation control of charger. The low-cost NEV charger developed to verify the performance and usability is verified with charging battery experiment by of using developed charger.

Analysis of the battery charging and discharging system for spacecrafts (인공위성용 총방전 시스템의 해석)

  • 김영태;김희진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.932-942
    • /
    • 1995
  • A spacecraft power system can be divided into two types : DET system(Direct Energy Transfer system) and PPT system(Peak Power Tracking system). In a DET system employing the regulated bus voltage control method, the battery charger and discharger are widely used for the bus voltage regulation. The battery charger has two different modes of operation. One is the bus voltage regulation mode and the other is the charge current regulation mode. The battery discharger is employed to provide the power when the spacecraft is in the earth's shadow or the sun is eclipsed. The operating mode, charging or discharging, is selected by a power control circuit. In this paper, small-signal dynamic characteristics of battery charging and discharging system are analyzed to facilitate design of control loop for optimum performance. Control loop designs in various operating modes are discussed. Anaylses are verified through experiments.

  • PDF