• 제목/요약/키워드: Battery Case

검색결과 387건 처리시간 0.024초

에너지저장장치와 결합한 WTG를 포함하는 전력계통의 Capacity Credit 평가 및 ESS 적정규모 평가방안 (Capacity Credit and Reasonable ESS Evaluation of Power System Including WTG combined with Battery Energy Storage System)

  • 오웅진;이연찬;최재석;임진택
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.923-933
    • /
    • 2016
  • This paper proposes a new method for evaluating Effective Load Carrying Capability(ELCC) and capacity credit(C.C.) of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). WTG can only generate electricity power when the fuel(wind) is available. Because of fluctuation of wind speed, WTG generates intermittent power. In view point of reliability of power system, intermittent power of WTG is similar with probabilistic characteristics based on power on-off due to mechanical availability of conventional generator. Therefore, high penetration of WTG will occur difficulties in power operation. The high penetration of numerous and large capacity WTG can make risk to power system adequacy, quality and stability. Therefore, the penetration of WTG is limited in the world. In recent, it is expected that BESS installed at wind farms may smooth the wind power fluctuation. This study develops a new method to assess how much is penetration of WTG able to extended when Wind Turbine Generator(WTG) is combined with Battery Energy Storage System(BESS). In this paper, the assessment equation of capacity credit of WTG combined with BESS is formulated newly. The simulation program, is called GNRL_ESS, is developed in this study. This paper demonstrates a various case studies of ELCC and capacity credit(C.C.) of power system containing WTG combined with BESS using model system as similar as Jeju island power system. The case studies demonstrate that not only reasonable BESS capacity for a WTG but also permissible penetration percent of WTG combined with BESS and reasonable WTG capacity for a BESS can be decided.

세장비가 큰 다단계 사각형 디프드로잉 성형공정해석 및 금형설 (FE Analysis and Die Design of The Multi-stage Rectangular Deep Drawing Process with the Large Aspect Ratio)

  • 김홍주;구태완;강범수
    • 소성∙가공
    • /
    • 제10권6호
    • /
    • pp.456-464
    • /
    • 2001
  • Deep drawing and ironing are tile major process today in manufacturing of aluminum alloy battery case used in cellular phone. Most of these process require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of these processes are relatively less known. Thus, it is expected that process analysis using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product. A commercially available finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

인서트 변형을 고려한 배터리 케이스 사출 성형 해석 (Injection Molding Analysis of Battery case considering the Insert Deformation)

  • 안동규;김대원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1107-1112
    • /
    • 2008
  • The objective of this paper is to investigate into the influence of the injection conditions on the insert deformation and the wall thickness of the injection part using the three-dimensional injection molding analysis. Full three-dimensional insert model was added to the injection molding analysis model to consider the effects of insert deformation during the injection molding process. In order to obtain the optimum injection molding condition with a minimum insert deformation, degree of experiments were utilized. From the results of the analyses, it was shown that the optimum injection condition is injection time of 1.6 sec, injection pressure of 30 MPa and packing time of 15 sec. In addition it was shown that the wall thickness is approached to target thickness when the core deformation is considered in the injection molding analysis.

  • PDF

개체 독립형 건축물 침입감지기 개발 (Development of Individual Trespassing Detector for Building)

  • 김명호
    • 전기학회논문지P
    • /
    • 제57권4호
    • /
    • pp.400-403
    • /
    • 2008
  • In this work, an individual trespassing detector using a PIR sensor to detect infrared rays only between the range of $9.4{\sim}10.4{\mu}m$ radiated from the body is proposed. This detector using FIR sensor detects not insect or object but human body, It doesn't restrict the inhabitant's behavior because the filter of pm sensor is designed to have face angle and the detector only detects the window area. The existing wide angle filter, RIR sensor, detects $30^{\circ}$ angle while the face angle filter sensor on this paper detects $11^{\circ}$ angle with 3cm of face angle filter from 2m of detecting distance. In case of interruption of electric power, 250mAh of lithium-ion battery has worked for 10 hours consuming 22mA in normal state. Meanwhile, in case of interruption of electric power, 250mAh of battery has worked for 4 hours consuming 60mA in trespassing detecting state. Projector, receptor, controller and alarm are put on one PCB in order to make it convenient to install without any special installation skill.

A LOW-COST PROTOCOL IN SENSOR NETWORK UBIQUITOUS ENVIRONMENT

  • Lee Dong-heui;Cho Young-bok;Kim Dong-myung;Lee Sang-ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.766-769
    • /
    • 2005
  • In a ubiquitous environment made up of multiple sensors, most sensors participate in communications with limited battery, and the sensor node isn't able to participate in communications when all the battery is used up. When an existing authentication method is used for the sensor node which has to participate in a long term communication with limited battery, it creates a problem by making the length of network maintenance or sensor node's operation time relatively shorte. Therefore, a network structure where RM (Register Manager) node and AM (Authentication Manager) node are imported to solve the energy consumption problem during a communication process is presented in this thesis. This offers a low power protocol based on safety through a mutual authentication during communications. Through registration and authentication manager nodes, each sensor nodes are ensured of safety and the algorithm of key's generation, encryption/descramble and authentication is processed with faster operation speed. So the amount of electricity used up during the communications between sensor nodes has been evaluated. In case of the amount of electrical usage, an average of $34.783\%$ for the same subnet and 36.855 for communications with two different subnets, are reduced. The proposed method is a protocol which maintains the limited battery for a long time to increase the effectiveness of energy usage in sensor nodes and can also increase the participation rate of communication by sensor nodes.

  • PDF

바이모달트램용 LPB Management System 개발 및 적용 (Development and Application of LPB Management System for Bimodal Tram)

  • 이강원;목재균
    • 전기학회논문지P
    • /
    • 제64권4호
    • /
    • pp.231-235
    • /
    • 2015
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

차세대 저궤도 소형위성 적용을 위한 전력시스템 설계 (Power System Design for Next Generation LEO Satellite Application)

  • 박성우;박희성;장진백;장성수
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

AC 회생이 가능한 배터리 충·방전 테스트 시스템 (AC Regeneratable Battery Charging and Discharging Test System)

  • 김준구;윤선재;김재형;원충연;나종국
    • 전력전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.99-106
    • /
    • 2012
  • In this paper, 15[kW] AC regenerative system for battery charging and discharging test is proposed. The regenerative system is able to regenerate surplus energy to the grid in discharging mode, and the inverter of the system can be operated as a converter to compensate scarce energy in charging mode. In case of the conventional DC charging and discharging system, the regenerative energy is consumed by a resistor. However, as the proposed system regenerates the surplus energy to the grid through using DC-AC inverter, the energy saving effect can be achieved. In this paper, 15[kW] battery charging and discharging system is developed, and the validity of the system is verified through simulation and experimental results.

특허정보분석을 활용한 지식단위의 변화와 미래숙련수요 분석 - 이차전지 사례를 중심으로 (Analysis of Knowledge Base and Future Skills Needs through Patentometrics - Case of Battery Industry)

  • 황규희;심위;고병열
    • 기술혁신학회지
    • /
    • 제14권spc호
    • /
    • pp.1209-1231
    • /
    • 2011
  • 본 연구에서는 기술전망과 특허분석에 기반하여 새로운 지식의 등장에 대한 미래숙련수요 분석방법론의 개발을 도모한다. 이차전지산업을 대상으로 하여 특허분류 기반 지식단위를 추출하고, 이러한 지식단위가 향후 이차전지 산업의 패러다임 전환에 대응하여 어떻게 변화하는가를 고찰하였다. 나아가 이에 기반하여 현행 관련 교과목에 대한 진단을 수행하고, 교과과목의 개선 필요사항을 제시하였다. 이러한 본 연구는 미래숙련수요 분석에 특허정보분석이 어떻게 활용될 수 있을지를 보임으로써, 특허 정보분석의 활용도를 높이는 한편 미래숙련수요 분석방법론의 진전을 도모하고자 하였다.

  • PDF

PEBB Based Bi-directional Rapid Charging System for EV Traction Battery

  • Kang, Taewon;Chae, Beomseok;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.323-324
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF