• Title/Summary/Keyword: Battery Capacity

Search Result 1,194, Processing Time 0.027 seconds

Analysis of Industrial Battery lifetime Using Instantaneous Discharge Test (순간방전 시험에 의한 산업용 축전지 잔존수명 분석)

  • Kim, Chong-Min;Bang, Sun-Bae;Shong, Kil-Mok;Kim, Sun-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.123-124
    • /
    • 2008
  • Battery is one of the emergency power. Battery reliability is a very important to keep up the minimum of building capabilities in case of interruption of electric power. Instantaneous discharge test is carried out for measuring transient voltage change(${\Delta}V$) and internal instantaneous impedance(Z), and then it is compared with discharge test results for the estimating the battery capacity. As a result, it was confirmed that the voltage change(${\Delta}V$) and the instantaneous impedance of the batteries failed in actual discharge test were higher that those of the sound batteries. Such an instantaneous discharge test can be a diagnosis of battery sound.

  • PDF

An Study for reuse of the waste lead battery using Pulse Charger with mode conversion type (모드 전환형 펄스충전기론 이용한 폐납축전지 재활용에 관한 연구)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Sang-Dong;Shin, Young-Mi;Kim, Jong-Dal;Kim, Dong-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.101-107
    • /
    • 2007
  • In this paper, the pulse charger with mode consersion type is proposed that can reuse the waste lead battery. The pulse charger uses the switch mode of the forward convert method. The pulse charger maintain the constant voltage in state removing the lead battery and when it connected the pulse charger, it is converted the charge mode of the constant current immediately. It continues the rapid charge until the full state of the lead battery. After that the pulse charger is converted to the charge mode of constant voltage automatically, and then it continues the normal charge. The experiment results show that the effectiveness of pulse charger such as the good performance and the prolonged durability in lead battery according to capacity states.

  • PDF

The First Discharge Characteristics of PAn/Li-Al Secondary Battery (PAn/Li-Al 2차전지의 초기방전특성)

  • Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.207-210
    • /
    • 1990
  • The purpose of this study is to research and develop polymer secondary battery. This paper describes the first discharge characteristics of PAn/Li-Al secondary battery. PAn was prepared in $HBF_4$ aqueous solution by galvanostatic electropolymerization and then used as cathode active material. PAn/Li-Al secondary battery was prepared in 2025 coin type. Characteristics of this battery are summarized as follows. ${\bullet}$ Open curcuit voltage and discharge end voltage was 3.5V and 2.9V, respectively. ${\bullet}$ The ratio of electricities in discharge to theoretical electricities in all undoping of PAn cathode was 56% at constant current discharge of 1mA. ${\bullet}$ The capacity density, energy density and maximum power density per weight of PAn electroactive material were 56.1Ah/kg, 168.4Wh/kg and 16.9kW/kg, respectively.

  • PDF

Optimal Design of Battery of Fuel Cell Electric Vehicle Based on Fuel Cell Dynamic Characteristic Model (연료전지 과도 특성 모델링 기반 FCEV용 배터리 용량 최적 설계)

  • Ko, Jeong-Min;Kim, Jong-Soo;Lee, Young-Kuk;Lee, Byung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1714-1719
    • /
    • 2009
  • In this paper, methodology of battery optimal designing is proposed. Fuel cell model including dynamic characteristic is developed and load model is produced by considering driving schedule. Using these models, required energy of load and supplying energy from fuel cell are analyzed by comparing simulation results. Also parameter of fuel cell model is changed variously and battery capacity is calculated in each cases. And methode of battery optimal designing is presented by regarding dynamic characteristic of fuel cell.

Factors Affecting on Electrochemical Performances for Zn/Air Fuel Cell (Zn/Air Fuel Cell의 전기화학적 성능에 미치는 인자연구)

  • Lee, Chang-Woo;Eom, Seung-Wook;Kim, Hyun-Soo;Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1717-1718
    • /
    • 2005
  • Zn/Air 전지는 방전하는 동안에 최종 방전 cut-off 전압에 이르기까지 평탄한 voltage profile의 전기화학적 특성을 보여준다. Air cathode 전극의 경우, 전극의 porosity에 따라 특성변화에 큰 영향을 가지는 것으로 보이며 이의 비교연구를 위해 사용되어지는 활성탄의 종류를 달리함으로써 이러한 인자의 영향을 이해하고자 하였다. 이러한 인자연구는 discharge voltage, specific capacity, 및 energy 등의 연구결과를 바탕으로 고찰되어졌으며 결과적으로 공기 유로를 통한 산소의 원활한 공급 여부가 주요 원인인 것으로 여겨진다.

  • PDF

Performance Evaluation for Application of Large Capacity LPB Pack Equipped to Series Hybrid Articulated Vehicle (직렬형 하이브리드 굴절차량용 대용량 LPB 팩의 적용 및 성능 평가)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.930-937
    • /
    • 2012
  • Newly developed Series hybrid low-floor articulated vehicle which can meet both road and railway running conditions. It has the rated driving speed of 80 km/h and three driving modes with hybrid(engine+battery) driving mode, engine driving mode, battery driving mode. The battery driving mode requires the several 10 km running without additional charging operation. The vehicle has been equipped with LPB (lithium polymer battery) pack for the series hybrid propulsion system. LPB pack consists of 168 cells (3.7 V in a cell, 80 Ah) in series, DC Circuit breaker, mechanical rack, BMS (battery management system). This paper has shown the design process of LPB pack and application to the vehicle. Driving results in the road was successful to be satisfied with the requirement of the series hybrid vehicle.

A Study on the Property Improvement of a Lead-Acid Battery by Inhibitor Addition (인히비터 첨가에 의한 연축전지의 성능 향상에 관한 연구)

  • Park, Gyeong-Hwa;Kim, Seong-Jong;Mun, Gyeong-Man
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.96-103
    • /
    • 1998
  • Lead-acid battery is being most widely used with secondary battery because of its low price, and long life cycles. But According to using for a long time, its voltage, capacity, and recovery ability is decreased gradually. Therefore there are many papers about improving the property of a lead-acid battery. One of them is to slow down sulfation due to formation of inner PbSO sub(4) by adding inhibitor to electrolyte, however it was not well known what is inhibitor's composition and its role acting on both cathodic and anodic electrode because of its know-how of every country and companies. The purpose of this paper is to study about improvement of property of lead-acid battery by adding one of the inhibitor to H sub(2) SO sub(4) electrolyte.

  • PDF

Optimal Capacity Determination of BESS for Customer using Investment Cost and Electric Cost (투자비용과 전기요금을 반영한 수용가 BESS의 최적용량 산정)

  • Park, Jin-Kyung;Baek, Young-Sik;Jeong, Ki-Seok;Park, Ji-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.208-213
    • /
    • 2015
  • This study presents the estimation method for the optimal capacity of BESS(Battery Energy Storage System) in order to reduce the electric charges of common consumer. The daily optimal charge and discharge plan of BESS which satisfies the given constraints is established using linear programming through the change of rated output/rated capacity of the time that shows the electric charges in the highest reduced rate has been selected. There will be a problem to compare only reduced rate because the bigger the rated capacity, the more reduced rate is increased. Therefore, rated output/rated capacity of the time when the reduced amount of electric charges for a year is higher than the investment cost of BESS was selected.

The electrochemical Characteristics on the Anode Material of Lithium Ion Secondary Batteries with Discharge Voltage (방전전압에 따른 리튬 이온 2차전지용 음극물질의 전기화학적 특성)

  • Park, Jong-Gwang;Han, Tae-Hui;Jeong, Dong-Cheol;Im, Seong-Hun;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.328-334
    • /
    • 2000
  • A lithium ion secondary battery using carbon as a negative electrode has been developed. Further improvements to increase the cell capacity are expected by modifying the structure of the carbonaceous material. There are hopes for the development of large capacity lithium ion secondary batteries with long cycle, high energy density, high power density, and high energy efficiency. In the present paper, needle cokes from petroleum were examined as an anode of lithium ion secondary battery. Petroleum cokes, MCL(Molten Caustic Leaching) treated in Korea Institute Energy Research, were carbonized at various temperatures of 0, 500, 700, $19700^{\circ}C$ at heating rate of $2^{\circ}C$/min for lh. The electrolyte was used lM liPF6 EC/DEC (1:1). The voltage range of charge & discharge was 0.0V(0.05V) ~ 2.0V. The treated petroleum coke at $700^{\circ}C$ had an initial capacity over 560mAh.g which beyond the theoretical maximum capacity, 372mAh/g for LiC6. This phenomena suggests that carbon materials with disordered structure had higher cell capacity than that the graphitic carbon materials.

  • PDF

Electrochemical Properties and Thermal Stability of LiNi0.8Co0.15 Al0.05O2-LiFePO4 Mixed Cathode Materials for Lithium Secondary Batteries

  • Kim, Hyun-Ju;Jin, Bong-Soo;Doh, Chil-Hoon;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.63-67
    • /
    • 2012
  • We prepared various $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-cathode electrodes by changing the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ and $LiFePO_4$ used, and we analyzed the electrochemical characteristics of the cathodes. We found that the reversible specific capacity of the cathodes increased and that the capacity retention ratios of the cathodes decreased during cycling as the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ increased. Conversely, we found that although the reversible specific capacity of the cathodes decreased because of the material composition, the cycle property of the cathodes increased when the $LiFePO_4$ content increased. We analyzed the thermal stability of the $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-material cathodes by differential scanning calorimetry and found that it increased as the $LiFePO_4$ content increased.