• Title/Summary/Keyword: Batch production

Search Result 1,153, Processing Time 0.026 seconds

Real-Time Batch Size Determination in The Production Line (생산 라인에서의 실시간 배치 크기 결정)

  • Na, Kihyun;Kim, Minje;Lee, Jonghwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.55-63
    • /
    • 2019
  • This paper develops an algorithm to determine the batch size of the batch process in real time for improving production and efficient control of production system with multiple processes and batch processes. It is so important to find the batch size of the batch process, because the variability arising from the batch process in the production system affects the capacity of the production. Specifically, batch size could change system efficiency such as throughput, WIP (Work In Process) in production system, batch formation time and so on. In order to improve the system variability and productivity, real time batch size determined by considering the preparation time and batch formation time according to the number of operation of the batch process. The purpose of the study is to control the WIP by applying CONWIP production system method in the production line and implements an algorithm for a real time batch size decision in a batch process that requires long work preparation time and affects system efficiency. In order to verify the efficiency of the developed algorithm that determine the batch size in a real time, an existed production system with fixed the batch size will be implemented first and determines that batch size in real time considering WIP in queue and average lead time in the current system. To comparing the efficiency of a system with a fixed batch size and a system that determines a batch size in real time, the results are analyzed using three evaluation indexes of lead time, throughput, and average WIP of the queue.

Optimal Operation Strategy and Production Planning of Sequential Multi-purpose Batch Plants with Batch Distillation Process (회분식 공정과 회분식 증류공정을 복합한 순차적 다목적 공정의 최적 운용전략 및 생산일정계획)

  • Ha, Jin-Kuk;Lee, Euy-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1163-1168
    • /
    • 2006
  • Manufacturing technology for the production of high value-added fine chemical products is emphasized and getting more attention as the diversified interests of customers and the demand of high quality products are getting bigger and bigger everyday. Thus, the development of advanced batch processes, which is the preferred and most appropriate way of producing these types of products, and the related technologies are becoming more important. Therefore, high-precision batch distillation is one of the important elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. Accordingly, proposing a process structure explanation and operation strategy of such processes including batch processes and batch distillation would be of great value. We investigate optimal operation strategy and production planning of multi-purpose plants consisting of batch processes and batch distillation for the manufacturing of fine chemical products. For the short-term scheduling of a sequential multi-purpose batch plant consisting of batch distillation under MPC and UIS policy, we proposed a MILP model based on a priori time slot allocation. Also, we consider that the waste product of being produced on batch distillation is recycled to the batch distillation unit for the saving of raw materials. The developed methodology will be especially useful for the design and optimal operations of multi-purpose and multiproduct plants that is suitable for fine chemical production.

Production of Lactococcal Bacteriocin using Repeated-Batch and Continuous Cultures

  • Yoo, Jin-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.284-287
    • /
    • 1992
  • Repeated-batch and continuous cultures of Lactococcus sp. 1112-1 were carried out for bacteriocin production using a glucose-casein medium. Repeated-batch culture did not efficiently enhanced the bacteriocin production. Continuous production was possible at the dilution rate of 0.4 $h^{-1}$. Maximum specific production rate ($Q^p$), bacteriocin production and biomass at the dilution rate were 347, 136 IU/g/h, 2, 121 IU/ml and 2.45 g/L, respectively.

  • PDF

MILP model for short-term scheduling of multi-purpose batch plants with batch distillation process

  • Ha, Jin-Juk;Lee, Euy-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1826-1829
    • /
    • 2003
  • Fine chemical production must assure high-standard product quality as well as characterized as multi-product production in small volumes. Installing high-precision batch distillation is one of the common elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. In this study, we investigate the optimal operation strategy and production planning of a sequential multi-purpose plants consisting of batch processes and batch distillation with unlimited intermediate storage. We formulated this problem as an MILP model. A mixed-integer linear programming model is developed based on the time slot, which is used to determine the production sequence and the production path of each batch. Illustrative examples show the effectiveness of the approach.

  • PDF

Effects of arsenite and variation of microbial community on continuous bio-hydrogen production from molasses using a sequence batch reactor (SBR)

  • William, Dennis Sambai;Lee, Pul-eip;Lee, Tae-jin
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.370-376
    • /
    • 2015
  • This study investigated the effects of various arsenite concentrations on bio-hydrogen production from molasses using a sequence batch reactor (SBR) operated in a series of three batch cycles. In the first batch cycle, hydrogen production was stimulated at arsenite concentrations lower than 2.0 mg/L, while inhibition occurred at arsenite concentration higher than 2.0 mg/L compared to the control. Hydrogen production decreased substantially during the second batch cycle, while no hydrogen was produced during the third batch cycle at all tested concentrations. The toxic density increased with respect to the increase in arsenite concentrations (6.0 > 1.6 > 1.0 > 0.5 mg/L) and operation cycles (third cycle > second cycle > first cycle). The presence of microorganisms such as Clostridium sp. MSTE9, Uncultured Dysgonomonas sp. clone MEC-4, Pseudomonas parafulva FS04, and Uncultured bacterium clone 584CL3e9 resulted in active stimulation of hydrogen production, however, it was unlikely that Enterobacter sp. sed221 was not related to hydrogen production. The tolerance of arsenite in hydrogen producing microorganisms decreased with the increase in induction time, which resulted in severing the inhibition of continuous hydrogen production.

Joint Batch Production and Inventory Rationing Control in a Two-Station Serial Production System (두 단계 일렬 생산 시스템에서 뱃치 생산과 재고 배급 전략의 통합 구현)

  • Kim, Eun-Gab
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.2
    • /
    • pp.89-97
    • /
    • 2012
  • This paper considers a manufacturer with a two-station make-to-stock and make-to-order serial production system. The MTS facility produces a single type of component and provides components for the MTO facility that produces customized products. In addition to the internal demand from the MTO facility, the MTS facility faces demands from the spot market with the option of to accept or reject each incoming demand. This paper addresses a joint component inventory rationing and batch production control which maximizes the manufacturer's profit. Using the Markov decision process model, we investigate the structural properties of the optimal inventory rationing and batch production policy, and present two types of heuristics. We implement a numerical experiment to compare the performance of the optimal and heuristic policies and a simulation study to examine the impact of the stochastic process variability on the inventory rationing and batch production control.

Rhamnolipid Production in Batch and Fed-batch Fermentation Using Pseudomonas aeruginosa BYK-2 KCTC 18012P

  • Lee, Kyung-Mi;Hwang, Sun-Hee;Ha, Soon-Duck;Jang, Jae-Hyuk;Lim, Dong-Jung;Kong, Jai-Yul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.267-273
    • /
    • 2004
  • The optimization of culture conditions for the bacterium Pseudomonas aeruginosa BYK-2 KCTC 18012P, was performed to increase its rhamnolipid production. The optimum level for carbon, nitrogen sources, temperature and pH, for rhamnolipid production in a flask, were identified as 25 g/L fish oil, 0.01% (w/v) urea, 25 and pH 7.0, respectively. Optimum conditions for batch culture, using a 7-L jar fermentor, were 200 rpm of agitation speed and a 2.0 L/min aeration rate. Under the optimum conditions, on fish oil for 216 h, the final cell and rhamnolipid concentrations were 5.3 g/L and 17.0 g/L respectively. Fed-batch fermentation, with different feeding conditions, was carried out in order to increase, cell growth and rhamnolipid production by the Pseudomonas aeruginosa, BYK-2 KCTC 18012P. When 2.5 g of fish oil and 100 mL basal salts medium, containing 0.01 % (w/v) urea, were fed intermittently during the fermentation, the final cell and rhamnolipid concentrations at 264 h, were 6.1 and 22.7 g/L respectively. The fed-batch culture resulted in a 1.2-fold increase in the dry cell mass and a 1.3-fold increase in rhamnolipid production, compared to the production of the batch culture. The rhamnolipid production-substrate conversion factor (0.75 g/g) was higher than that of the batch culture (0.68 g/g).

Exopolysaccharide Production in Fed-batch and Continuous Culture by Methylomonas mucosa (Methylomonas mnosa에 의한 Exopolysaccharide의 유가식 및 연속 생산)

  • 장호남;권선훈심상준
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.164-171
    • /
    • 1993
  • The production of extracellular polysaccharide by Methylomonas mucosa (NRRL B-5696) was investigated. The microorganism uses methanol as the carbon source for their growth and produces exopolysaccharides. The productivity of exopolysaccharides was investigated under various culture modes: batch, fed-batch and continuous culture. In flask culture the growth of cell mass and the production of polysaccharide were inhibited at above 1% (v/v) methanol. At 1%(v/v) methanol maximum specific growth rate was obtained. As C/N ratio (g methanol/g ammonium sulfate) increased, polysaccharide production increased and cells mass decreased. Magnesium ion was also found to be essential for the polysaccharide production. In batch culture the production of polysaccharides was more affected by the specific growth rate than the cell concentration. In fed-batch culture the concentration of polysaccharide was 4 times higher than that of batch culture, but the yield was lower. The productivity of fed-batch with continuous feeding was higher than that of batch or fed-batch with intermittent feeding. This is due to no methanol limitation or inhibition that used to occur in fed-batch culture with intermittent feeding. In continuous culture pure oxygen was supplied to avoid the oxygen limitation. As the dilution rate in- creased up to 0.21 h-1, the yield and productivity increased. The solution viscosity of the produced polysaccharide obtained from above increased exponentially with the concentration of polysaccharide.

  • PDF

Alcohol Production from Whey in Batch and Continuous Culture of Kluyveromyces fragilis.

  • Heo, Tae-Ryeon;Kim, Jong-Soo;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.333-337
    • /
    • 1994
  • In order to develop the whey beverage, we examined the optimum conditions for alcohol fermentation by Kluyveromyces tragilis ATCC 46537. The optimum conditions for alcohol production by K. fragilis ATCC 46537 were as follows; pH 4.5, $30^{\cir}C$, with a supplement of 50 g/l of lactose. To develop a continuous production of alcohol from whey, we compared batch fermentation with continuous iermentation in conjunction with UF system. Batch fermentation produced 11.0 g/l of alcohol, whereas pseudocontinuous and continuous fermentation with UF system produced 8.5 g/l of alcohol. To increase the alcohol production, we added 50 g/l of lactose to both fermentations. Batch fermentation with lactose supplement produced 15.7 g/l of alcohol and continuous fermentation with lactose supplement in conjunction with UF system produced 15.0 g/l of alcohol. These results clearly demonstrate that the UF system can be used to increase the alcohol production from whey, supplemented with exogenous lactose.

  • PDF

Start-up Strategy for the Successful Operation of Continuous Fermentative Hydrogen Production (연속 혐기성 수소발효 공정에서 성공적인 start-up 방법)

  • Lee, Chang-Kyu
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • The variations of performance and metabolites at an early stage were investigated for the successful start-up technology in continuous fermentative hydrogen production. Unsuccessful start-up was observed when the operation mode was changed from batch to continuous mode after the yield was reached to 0.5 mol $H_2$/mol $hexose_{added}$ by batch mode. $H_2$ production continued till 12 hours accompanied by butyrate production, but did not last with propionate production increase. It was suspected that the failure was due to the regrowth of propionic acid bacteria during batch mode which were inhibited by heat-shock but not completely killed. Thus, successful start-up was tried by early switchover from batch to continuous operation; continuous operation was started after the $H_2$ yield was reached to 0.2 mol $H_2$/mol $hexose_{added}$ by batch mode. Although $H_2$ production rate decreased at an early stage, stable $H_2$ yield of 0.8 mol $H_2$/mol $hexose_{added}$ was achieved after 10 days by lowering down propionate production. And it was also concluded that the reason for $H_2$ production decrease at an early stage was due to alcohol production by self detoxification mechanism against VFAs accumulation.