• Title/Summary/Keyword: Batch process

Search Result 1,273, Processing Time 0.022 seconds

Nitrate and Phosphate Adsorption Properties by Aminated Vinylbenzyl Chloride Grafted Polypropylene Fiber (아민형 PP-g-VBC의 NO3-N과 PO4-P 흡착특성)

  • Lee, Yong-Jae;Song, Jee-June;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.543-550
    • /
    • 2016
  • Amine-type PP-g-VBC-EDA adsorbent, which possesses anionic exchangeable function, was prepared through photoinduced graft polymerization of vinylbenzyl chloride (VBC) onto polypropylene non-woven fabric and subsequent amination reaction using ethylenediamine (EDA). Adsorption characteristics of anionic nutrients on the PP-g-VBC-EDA adsorbent have been studied by batch adsorption experiments. The equilibrium data well fitted the Langmuir isotherm model, and the maximum monolayer sorption capacity was found to be 59.9 mg/g for $NO_3-N$ and 111.4 mg/g for $PO_4-P$. The adsorption energies were higher than 8 kJ/mol indicating anion-exchange process as the primary adsorption mechanism. The pseudo-second order kinetic model described well the kinetic data and resulted in the activation energy of 9.8-36.7 kJ/mol suggesting that the overall rates of $NO_3-N$ and $PO_4-P$ adsorption are controlled by the chemical process. Thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$ and ${\Delta}S^o$ indicated that the adsorption nature of PP-g-VBC-EDA for anionic nutrients is spontaneous and exothermic. The PP-g-VBC-EDA could be regenerated by washing with 0.1 N HCl.

Adsorption Kinetic and Thermodynamic Studies of Tricyclazole on Granular Activated Carbon (입상 활성탄에 대한 트리사이크라졸의 흡착동력학 및 열역학적 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, H.T.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.623-629
    • /
    • 2011
  • The adsorption characteristics of tricyclazole by granular activated carbon were experimently investigated in the batch adsorption. Kinetic studies of adsorption of tricyclazole were carried out at 298, 308 and 318 K, using aqueous solutions with 250, 500 and 1,000 mg/L initial concentration of tricyclazole. It was established that the adsorption equilibrium of tricyclazole on granular activated carbon was successfully fitted by Freundlich isotherm equation at 298 K. The pseudo first order and pseudo second order models were used to evaluate the kinetic data and the pseudo second order kinetic model was the best with good correlation. Values of the rate constant ($k_2$) have been calculated as 0.1076, 0.0531, and 0.0309 g/mg h at 250, 500 and 1,000 mg/L initial concentration of tricyclazole, respectively. Thermodynamic parameter such as activation energy, standard enthalpy, standard entropy and standard free energy were evaluated. The positive value for enthalpy, -66.43 kJ/mol indicated that adsorption interaction of tricyclazole on activated carbon was an exothermic process. The estimated values for standard free energy were -5.08~-8.10 kJ/mol over activated carbon at 200 mg/L, indicated toward a exothermic process.

Electrochemical Reduction of Carbon Dioxide Using a Proton Exchange Membrane (양이온 교환막을 이용한 이산화탄소의 전기화학적 환원)

  • Kim, Hak-Yoon;Ahn, Sang Hyun;Hwang, Seung Jun;Yoo, Sung Jong;Han, Jonghee;Kim, Jihyun;Kim, Soo-Kil;Jang, Jong Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.216-221
    • /
    • 2012
  • Electrochemical reduction of carbon dioxide has been widely studied by many scientists and researchers. Recently, the production of formic acid, which is expensive but highly useful liquid material, is receiving a great attention. However, difficulties in the electrochemical reduction process and analyzing methods impede the researches. Therefore, it is important to design an adequate system, develop the reduction process and establish the analyzing methods for carbon dioxide reduction to formic acid. In this study, the production of formic acid through electrochemical reduction of carbon dioxide was performed and concentration of the product has been analyzed. Large scale batch cell with proton exchange membrane was used in the experiment. The electrochemical experiment has been performed using a series of metal catalysts. Linear sweep voltammetry (LSV) and chronoamperometry were performed for carbon dioxide reduction and electrochemical analysis using silver chloride and platinum electrode as a reference electrode and counter electrode, respectively. The concentration of formic acid generated from the reduction was monitored using high performance liquid chromatography (HPLC). The results validate the appropriateness and effectiveness of the designed system and analyzing tool.

Drying Characteristics of High Moisture Low Rank Coal using a Steam Fluidized-bed Dryer (스팀 유동층 건조기를 이용한 고수분 저등급 석탄의 건조 특성)

  • Kim, Gi Yeong;Rhee, Young-Woo;Park, Jae Hyeok;Shun, Dowon;Bae, Dal-Hee;Shin, Jong-Seon;Ryu, Ho-Jung;Park, Jaehyeon
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.321-329
    • /
    • 2014
  • In this study, Indonesia low rank coal, which has moisture content of around 26%, is dried less than 5% by using a laboratory-scale (batch type) steam fluidized-bed dryer in order to produce the low-moisture, high rank coal. Normally, CCS (carbon capture and storage) process discharges $CO_2$ and steam mixture gas around $100-150^{\circ}C$ of temperature after regeneration reactor. The final purpose of this research is to dry low rank coal by using the outlet gas of CCS process. At this stage, steam is used as heat source for drying through the heat exchanger and $CO_2$ is used as fluidizing gas to the dryer. The experimental variables were the steam flow rate ranging from 0.3 to 1.1 kg/hr, steam temperature ranging from 100 to $130^{\circ}C$, and bed height ranging from 9 to 25 cm. The characteristics of the coal, before and after drying, were analyzed by a proximate analysis, the heating value analysis and particle size analysis. In summary, the drying rate of low rank coal was increased as steam flow rate and steam temperature increased and increased as bed height decreased.

A Study on the Growth Characteristics of Commercially Developed Nitrifying Bacteria and its Application to Activated Sludge Process (상업용 질산화 박테리아의 성장특성과 활성슬러지 공정에서의 적용 방법에 따른 연구)

  • Whang, Gyu-Dae;Lee, Bong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.595-604
    • /
    • 2006
  • The growth characteristics of Commercially Developed Nitrifying Bacteria (CDNB) were studied in laboratoryscale. CDNB, a pure, artificially isolated bacterium, was cultivated to produce Cultivated Nitrifying Bacterium Group (CNBG). The average ammonia removal rate of CDNB was 0.0234g $NH_4^+-N/g$ MLSS/hr. CNBG was produced in the batch reactor and Specific Nitrification Rate (SNR) was determined at 0.0107g $NH_4^+-N/g$ MLSS/hr. The SNR of CNBG was lower than the SNR of CDNB because the diverse and multi-cultured microbial growth took place during cultivation. The effect of the temperatures and the mixing ratios of sewage and culture solution on the SNR of CNBG was studied. The SNR of CNBG, 0.0107g $NH_4^+-N/g$ MLSS/hr at $27^{\circ}C$, decreased to 0.0048g $NH_4^+-N/g$ MLSS/hr at $15^{\circ}C$, and temperature coefficient (${\Theta}$) was calculated to be 1.07. With the varied sewage mixing ratios, the SNR of CNBG remained unchanged. Activated sludge reactors maintaining an MLSS of 2,000mg/L at HRT of 4 h were operated under conditions in which dosage of Concentrated CNBG Solution (CCNBGS, 10,000mg MLSS/L) and application method of CNBG were varied. The reactor with 20mL of CCNBGS took shorter time to oxidize $NH_4^+-N$ reaching 1mg/L than the reactor with 5mL of CCNBGS showing that higher dosages were associated with greater mass removal of $NH_4^+-N$. However, the total removal was not great. In terms of different methods of CNBG application, reactor seeded with 20mL of CCNBGS took 3days to reach 1mg/L of effluent ammonia concentration while reactor dosed with 20% (v/v) CNBG implanted media took 2days. Both the control reactor and the reactor dosed with 20% (v/v) media only did not reach 1mg $NH_4^+-N/L$ after operating 18days. The reactor with CNBG implanted media had the highest $NH_4^+-N$ removal rate because of maintaining high concentration of Nitrifying Oxidizing Bacteria (NOM), and is regarded as an appropriate method for the activated sludge process.

Separation of Nitric Acid and Acetic Acid from the Waste Acid in LCD Etching Process (LCD 식각폐액으로부터 질산과 초산의 분리)

  • Chun, Hee-Dong;Roh, Yu-Mi;Park, Sung-Kuk;Kim, Ju-Han;Shin, Chang-Hoon;Kim, Ju-Yup;Ahn, Jae-Woo
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.123-128
    • /
    • 2008
  • The waste solution, which was discharged from the recovery process of LCD etching solution, consists of 15 wt% nitric acid and 20 wt% acetic acid. In this study, it was conducted to separate acid individually from the mixed acid by vacuum evaporation under -760 mmHg gauge and at $40^{\circ}C$. We have investigated evaporation behavior of acid as a function of temperature. There have been problems that tiny amount of nitric acid were evaporated simultaneously above $33^{\circ}C$. Thus, efforts were conducted to recover acetic acid by vacuum evaporation with adding $H_2O$, waste mixed acid and 20 g/L NaOH for a curb on evaporation of nitric acid. By adding $H_2O$, evaporation of nitric acid was reduced from 7% to 0.78%. However, it was reduced from 7% to 0.25% by adding mixed acid. In view of the results achieved so far, we may expect to separate the etching solution individually by controlling vacuum conditions.

  • PDF

Effect of Feeding Pattern and Anaerobic Fill Time on the Denitrifcation and Sludge Settling Ability in the SBR Process (SBR 공정에서 유입수 주입방식과 비 포기 유입수 주입시간이 탈질효율과 슬러지 침강성에 미치는 영향)

  • Lee, Sang-Min;Nam, Se-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.719-725
    • /
    • 2005
  • Anaerobic fill time and feeding pattern in SBR operation were investigated to find way of minimizing poor nitrogen removal efficiency in BNR process without external carbon addition. The three types of the modified SBR operations that were CO-SBR, IA-SBR, and SF-SBR were tested by lab-scale and pilot-scale SBR processes($2\;m^3/day$). In addition, practical equation for biological nitrogen removal was suggested and the equation considered the effect of ratio of fill volume over whole SBR volume and the ratio of step-feed in SBR. The denitrification efficiency of the SF-SBR was best among the three SBRs and followed by IA-SBR, and CO-SBR. The efficiency was 95%, 61%, and 19%, respectively. Looking at the change of sludge floc density by the length of anaerobic fill time, the density of sludge floc at 1 hour and 2 hours of anaerobic fill time were greater than 3 hours of one. The floc size distributions were $100{\sim}300\;{\mu}m$ and $200{\sim}400\;{\mu}m$ with respect to anaerobic fill time 2 hours and 3 hours, respectively.

Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent (메조공극 흡착제를 이용한 상수원수내 맛·냄새 유발물질 제거특성 평가)

  • Kim, Jong-Doo;Park, Chul-Hwi;Yun, Yeo-Bog;Lee, Dae-Sung;Kim, Hyo-Jeon;Kang, Seok-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • The objective of this study was to evaluate the characteristic of adsorption by using a meso-porous adsorbent (MPA), and investigate the removal efficiency of geosmin which taste and odor causing compounds in drinking water supplies through batch test. The results for the adsorption isotherm was analyzed by using the Langmuir equation and Freundlich equation, generally being applied. And the study showed that the both Langmuir and Freundlich equation explains the results better. Both of pseudo-first-order model and pseudo-second-order model were respectively applied for evaluation of kinetic sorption property of geosmin onto MPA. The adsorption experiment results using MPA showed that maximum adsorption capacity of MPA was lower 7 times than that of GAC, and adsorption rate of MPA was faster 11 times than that of GAC, on the basis of pseudo-first-order model. Therefore, it was determined that MPA was effectively able to remove geosmin in drinking water supplies in short EBCT condition, but regeneration cycle in MAP process was shorter than that in conventional process.

Effects of pH and Temperature on the Adsorption of Cationic Dyes from Aqueous Suspension by Maghnia Montmorillonite (수용액으로부터 양이온 염료 흡수에 대한 pH 및 온도 효과)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.208-217
    • /
    • 2011
  • The effects of pH and temperature on the removal of two dyes (neutral red; NR and malachite green oxalates; MG) from aqueous effluents using Maghnia montmorillonite clay in a batch adsorption process were investigated. The results showed the stability of the optical properties of MG in aqueous solution and adsorbed onto clay under wide range of pH 3-9. However, the interaction of NR dye with clay is accompanied by a red shift of the main absorption bands of monomer cations under pH range of 3-5, whereas, those of neutral form remains nearly constant over the pH range of 8-12. The optimal pH for favorable adsorption of the dyes, i.e. ${\geq}$90% has been achieved in aqueous solutions at 6 and 7 for NR and VM respectively. The most suitable adsorption temperatures were 298 and 318 K with maximum adsorption capacities of 465.13mg/g for NR and 459.89 mg/g for MG. The adsorption equilibrium results for both dyes follow Langmuir, Freundlich isotherms. The numerical values of the mean free energy $E_a$ of 4.472-5.559 kj/mol and 2.000-2.886 kj/mol for NR and MG respectively indicated physical adsorption. Various thermodynamic parameters, such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$, ${\Delta}G^{\circ}$ and Ea have been calculated. The data showed that the adsorption process is spontaneous and endothermic. The sticking probability model was further used to assess the potential feasibility of the clay mineral as an alternative adsorbent for organic ion pollutants in aqueous solution.

Study on Equillibrium, Kinetic, Thermodynamic Parameters for Adsorption of Brilliant Green by Zeolite (제올라이트에 의한 Brilliant Green의 흡착에 대한 평형, 동역학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.112-118
    • /
    • 2018
  • Adsorption equilibrium, kinetic and thermodynamic parameters of a brilliant green from aqueous solutions at various initial dye concentration (10~30 mg/L), contact time (1~24 h) and temperature (298~318 K) on zeolite were studied in a batch mode operation. The equilibrium adsorption values were analyzed by Langmuir, Freundlich and Dubinin-Radushkevich model. The results indicate that Langmuir and Freundlich model provides the best correlation of the experimental data. Base on the estimated values of Langmuir dimensionless separation factor ($R_L=0.041{\sim}0.057$) and Freundlich constant (1/n=0.30~0.47), this process could be employed as effective treatment method. calculated values of adsorption energy by Dubinin-Radushkevich model were 1.564~1.857 kJ/mol corresponding to physical adsorption. The adsorption kinetics of brilliant green were best described by the pseudo second-order rate model and followed by intraparticle diffusion model. Thermodynamic parameters such as activation energy, free energy, enthalpy and entropy were calculated to estimate nature of adsorption. negative Gibbs free energy (-10.3~-11.4 kJ/mol), positive enthalpy change (49.48 kJ/mol) and Arrehenius activation energy (27.05 kJ/mol) indicates that the adsorption is spontaneous, endothermic and physical adsorption process, respectively.