• Title/Summary/Keyword: Basis Images

Search Result 678, Processing Time 0.023 seconds

Metal artifact production and reduction in CBCT with different numbers of basis images

  • Queiroz, Polyane Mazucatto;Santaella, Gustavo Machado;Groppo, Francisco Carlos;Freitas, Deborah Queiroz
    • Imaging Science in Dentistry
    • /
    • v.48 no.1
    • /
    • pp.41-44
    • /
    • 2018
  • Purpose: To evaluate the effect of different numbers of basis images and the use of metal artifact reduction (MAR) on the production and reduction of artifacts in cone-beam computed tomography images. Materials and Methods: An acrylic resin phantom with a metal alloy sample was scanned, with 450 or 720 basis images and with or without MAR. Standard deviation values for the test areas (around the metal object) were obtained as a way of measuring artifact production. Two-way analysis of variance was used with a 5% significance level. Results: There was no significant difference in artifact production among the images obtained with different numbers of basis images without MAR (P=.985). MAR significantly reduced artifact production in the test areas only in the protocol using 720 basis images (P=.017). The protocol using 450 basis images with MAR showed no significant difference in artifact production when compared to the protocol using 720 basis images with MAR (P=.579). Conclusion: Protocols with a smaller number of basis images and with MAR activated are preferable for minimizing artifact production in tomographic images without exposing the patient to a greater radiation dose.

Motion Recognitions Based on Local Basis Images Using Independent Component Analysis (독립성분분석을 이용한 국부기저영상 기반 동작인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.617-623
    • /
    • 2008
  • This paper presents a human motion recognition method using both centroid shift and local basis images. The centroid shift based on 1st moment balance technique is applied to get the robust motion images against position or size changes, the extraction of local basis images based on independent component analysis(ICA) is also applied to find a set of statistically independent motion features, which is included in each motions. Especially, ICA of fixed-point(FP) algorithm based on Newton method is used for being quick to extract a local basis images of motions. The proposed method has been applied to the problem for recognizing the 160(1 person * 10 animals * 16 motions) sign language motion images of 240*215 pixels. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate) than the method using local eigen images and the method using local basis images without centroid shift respectively.

저전송률 영상압축에 있어서의 후처리 기법

  • 이주흥;정제창;최병욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.233-236
    • /
    • 1996
  • A new method of blocking effects reduction is proposed in this paper for use in low bitrate image coding. We use 28 DCT kernel functions of which boundary values are linearly independent, and Gram-Schmidt process is applied to the boundary values in order to obtain 28 boundary-orthonormal basis images. Then we use these basis images to obtain the correction terms for blocking artifacts reduction. A threshold of block discontinuity is introduced for improvement of visual quality by reducing image blurring. We also investigate the number of basis images needed for efficient blocking artifacts reduction when the compression ratio changes.

  • PDF

Face Recognition Robust to Local Distortion Using Modified ICA Basis Image

  • Kim Jong-Sun;Yi June-Ho
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.251-257
    • /
    • 2006
  • The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of 'recognition by parts.' It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Non-negative Matrix Factorization)and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architecture II, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortion

  • PDF

Image Restoration in Dual Energy Digital Radiography using Wiener Filtering Method

  • Min, Byoung-Goo;Park, Kwang-Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.171-176
    • /
    • 1987
  • Wiener filtering method was applied to the dual energy imaging procedure in digital radiography(D.R.). A linear scanning photodiode arrays with 1024 elements(0.6mm H 1.3mm pixel size) were used to obtain chest images in 0.7 sec. For high energy image acquisition, X-ray tube was set at 140KVp, 100mA with a rare-earth phosphor screen. Low energy image was obtained with X-ray tube setting at 70KVp, 150mA. These measured dual energy images are represented in the vector matrix notation as a linear discrete model including the additive random noise. Then, the object images are restored in the minimum mean square error sense using Wiener filtering method in the transformed domain. These restored high and low energy images are used for computation of the basis image decomposition. Then the basis images are linearly combined to produce bone or tissue selective images. Using this process, we could improve the signal to noise ratio characteristics in the material selective images.

  • PDF

Face Recognition Robust to Local Distortion using Modified ICA Basis Images (개선된 ICA 기저영상을 이용한 국부적 왜곡에 강인한 얼굴인식)

  • Kim Jong-Sun;Yi June-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.481-488
    • /
    • 2006
  • The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of 'recognition by parts.' It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Non-negative Matrix Factorization) and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architectureII, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortions.

An Efficient Face Recognition Using First Moment of Image and Basis Images (영상의 1차 모멘트와 기저영상을 이용한 효율적인 얼굴인식)

  • Cho Yong-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.7-14
    • /
    • 2006
  • This paper presents an efficient face recognition method using both first moment of image and basis images. First moment which is a method for finding centroid of image, is applied to exclude the needless backgrounds in the face recognitions by shifting to the centroid of face image. Basis images which are the face features, are respectively extracted by principal component analysis(PCA) and fixed-point independent component analysis(FP-ICA). This is to improve the recognition performance by excluding the redundancy considering to second- and higher-order statistics of face image. The proposed methods has been applied to the problem for recognizing the 48 face images(12 persons*4 scenes) of 64*64 pixels. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed methods has a superior recognition performances(speed, rate) than conventional PCA and FP-ICA without preprocessing, the proposed FP-ICA has also better performance than the proposed PCA. The city-block has been relatively achieved more an accurate similarity than Euclidean or negative angle.

Selecting Optimal Basis Function with Energy Parameter in Image Classification Based on Wavelet Coefficients

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.437-444
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have tried to enhance classification accuracy. Previous studies have shown that the classification technique based on wavelet transform is more effective than traditional techniques based on original pixel values, especially in complicated imagery. Various basis functions such as Haar, daubechies, coiflets and symlets are mainly used in 20 image processing based on wavelet transform. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we first computed the wavelet coefficients of satellite image using ten different basis functions, and then classified images. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis functions. The energy parameters of wavelet detail bands and overall accuracy are clearly correlated. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

A Classification Technique for Panchromatic Imagery Using Independent Component Analysis Feature Extraction

  • Byoun, Seung-Gun;Lee, Ho-Yong;Kim, Min;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.23-28
    • /
    • 2002
  • Among effective feature extraction methods from the small-patched image set, independent component analysis (ICA) is recently well known stochastic manner to find informative basis images. The ICA simultaneously learns both basis images and independent components using high order statistic manners, because that information underlying between pixels are sensitive to high-order statistic models. The topographic ICA model is adapted in our experiment. This paper deals with an unsupervised classification strategies using learned ICA basis images. The experimental result by proposed classification technique shows superior performance than classic texture analysis techniques for the panchromatic KOMPSAT imagery.

  • PDF

Blocking artifacts reduction for improving visual quality of highly compressed images (압축영상의 화질향상을 위한 블록킹 현상 제거에 관한 연구)

  • 이주홍;김민구;정제창;최병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1677-1690
    • /
    • 1997
  • Block-transform coding is one of the most popular approaches for image compression. For example, DCT is widely used in the internaltional standards standards such as MPEG-1, MPEG-2, JPEG, and H.261. In the block-based transform coding, blocking artifacts may appear along block boundaries, and they can cause severe image degradation eqpecially when the transform coefficients are coarsely quantized. In this paper, we propose a new method for blocking artifacts reduction in transform-coded images. For blocking artifacts reduction, we add a correction term, on a block basis, composed of a linear combination of 28 basis images that are orthonormal on block boundaries. We select 28 DCT kernel functions of which boundary values are linearly independent, and Gram-Schmidt process is applied to the boundary values in order to obtain 28 boundary-orthonormal basis images. A threshold of bolock discontinuity is introduced for improvement of visual quality by reducing image blurring. We also investigate the number of basis images needed for efficient blocking artifacts reduction when the compression ratio changes.

  • PDF