• Title/Summary/Keyword: Basis

Search Result 31,780, Processing Time 0.052 seconds

Basis Mode of Turbulent Flame in a Swirl-Stabilized Gas Turbine using LES and POD

  • Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.29-35
    • /
    • 2001
  • Unsteady numerical study has been conducted on combustion dynamics of a lean-premixed swirl-stabilized gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) parallel architecture, large eddy simulation(LES), and proper orthogonal decomposition (POD) technique was applied. The unsteady turbulent flame dynamics are simulated so that the turbulent flame structure can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots. Those flame dynamics coincides with experimental data. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis. The flame structure based on odd basis modes is apparently larger than that of even ones. The flame structure can be extracted from the summation of the basis modes and eigenvectors at any moment.

  • PDF

Cellular Automata and It's Applications

  • Lee, Jun-Seok;Cho, Hyun-Ho;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.610-619
    • /
    • 2003
  • This paper presents a concept of cellular automata and a modular exponentiation algorithm and implementation of a basic EIGamal encryption by using cellular automata. Nowadays most of modular exponentiation algorithms are implemented by a linear feedback shift register(LFSR), but its structure has disadvantage which is difficult to implement an operation scheme when the basis is changed frequently The proposed algorithm based on a cellular automata in this paper can overcome this shortcomings, and can be effectively applied to the modular exponentiation algorithm by using the characteristic of the parallelism and flexibility of cellular automata. We also propose a new fast multiplier algorithm using the normal basis representation. A new multiplier algorithm based on normal basis is quite fast than the conventional algorithms using standard basis. This application is also applicable to construct operational structures such as multiplication, exponentiation and inversion algorithm for EIGamal cryptosystem.

  • PDF

Cyclic Vector Multiplication Algorithm Based on a Special Class of Gauss Period Normal Basis

  • Kato, Hidehiro;Nogami, Yasuyuki;Yoshida, Tomoki;Morikawa, Yoshitaka
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.769-778
    • /
    • 2007
  • This paper proposes a multiplication algorithm for $F_{p^m}$, which can be efficiently applied to many pairs of characteristic p and extension degree m except for the case that 8p divides m(p-1). It uses a special class of type- Gauss period normal bases. This algorithm has several advantages: it is easily parallelized; Frobenius mapping is easily carried out since its basis is a normal basis; its calculation cost is clearly given; and it is sufficiently practical and useful when parameters k and m are small.

  • PDF

Design of nonlinear system controller based on radial basis function network (Radial Basis 함수 회로망을 이용한 비선형 시스템 제어기의 설계에 관한 연구)

  • 박경훈;이양우;차득근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1165-1168
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Network(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Radial Basis Function Networks(RBFN). The learning with RBFN is fast and precise. This paper discusses RBFN as identification procedure is based on a nonlinear dynamical systems. and A design method of model follow control system based on RBFN controller is developed. As a result of applying this method to inverted pendulum, the simulation has shown that RBFN can be used as identification and control of nonlinear dynamical systems effectively.

  • PDF

H∞ Control of T-S Fuzzy Systems Using a Fuzzy Basis- Function-Dependent Lyapunov Function (퍼지 기저함수에 종속적인 Lyapunov 함수를 이용한 T-S 퍼지 시스템의 H∞ 제어)

  • Choi, Hyoun-Chul;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.615-623
    • /
    • 2008
  • This paper proposes an $H_{\infty}$ controller design method for Takagi-Sugeno (T-S) fuzzy systems using a fuzzy basis-function-dependent Lyapunov function. Sufficient conditions for the guaranteed $H_{\infty}$ performance of the T-S fuzzy control system are given in terms of linear matrix inequalities (LMIs). These LMI conditions are further used for a convex optimization problem in which the $H_{\infty}-norm$ of the closed-loop system is to be minimized. To facilitate the basis-function-dependent Lyapunov function approach and thus improve the closed-loop system performance, additional decision variables are introduced in the optimization problem, which provide an additional degree-of-freedom and thus can enlarge the solution space of the problem. Numerical examples show the effectiveness of the proposed method.

Bayesian curve-fitting with radial basis functions under functional measurement error model

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.749-754
    • /
    • 2015
  • This article presents Bayesian approach to regression splines with knots on a grid of equally spaced sample quantiles of the independent variables under functional measurement error model.We consider small area model by using penalized splines of non-linear pattern. Specifically, in a basis functions of the regression spline, we use radial basis functions. To fit the model and estimate parameters we suggest a hierarchical Bayesian framework using Markov Chain Monte Carlo methodology. Furthermore, we illustrate the method in an application data. We check the convergence by a potential scale reduction factor and we use the posterior predictive p-value and the mean logarithmic conditional predictive ordinate to compar models.

Comparative studies of density functionals in modelling hydrogen bonding energetics of acrylamide dimers

  • Lin, Yi-De;Wang, Yi-Siang;Chao, Sheng D.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.369-376
    • /
    • 2017
  • Intermolecular interaction energies and conformer geometries of the hydrogen bonded acrylamide dimers have been studied by using the second-order Møller-Plesset (MP2) perturbation theory and the density functional theory (DFT) with 17 density functionals. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) have been used to study the basis set effects. The DFT calculated interaction energies are compared to the reference energy data calculated by the MP2 method and the coupled cluster method at the complete basis set (CCSD(T)/CBS) limit in order to determine the relative performance of the studied density functionals. Overall, dispersion-energy-corrected density functionals outperform uncorrected ones. The ${\omega}B97XD$ density functional is particularly effective in terms of both accuracy and computational cost in estimating the reference energy values using small basis sets and is highly recommended for similar calculations for larger systems.

A High speed Standard Basis GF(2$^{m}$ ) Multiplier with A Known Primitive Coefficient Set (Standard Basis를 기반으로 하는 유한체내 고속 GF($2^m$) 곱셈기 설계)

  • 최성수;이영규;박민경;김기선
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.333-336
    • /
    • 1999
  • In this paper, a new high speed parallel input and parallel output GF(2$^{m}$ ) multiplier based on standard basis is proposed. The concept of the multiplication in standard basis coordinates gives an easier VLSI implementation than that of the dual basis. This proposed algorithm and method of implementation of the GF(2$^{m}$ ) multiplication are represented by two kinds of basic cells (which are the generalized and fixed basic cell), and the minimum critical path with pipelined operation. In the case of the generalized basic cell, the proposed multiplier is composed of $m^2$ basic cells where each cell has 2 two input AND gates, 2 two input XOR gates, and 2 one bit latches Specifically, we show that the proposed multiplier has smaller complexity than those proposed in 〔5〕.

  • PDF

Zone based Ad Hoc Network Construction Scheme for Local IoT Networks

  • Youn, Joosang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.95-100
    • /
    • 2017
  • In this paper, we propose a zone based ad hoc network construction scheme which support ad hoc path between nodes in local IoT networks consisting of IoT devices with the constrained feature, such as low power, the limited transmission rate and low computing capacity. Recently, the various routing protocols have been studied to support ad hoc networking of local IoT environments. This is, because basis RPL protocol is deigned to be used for the connecting service with Internet through gateway, ad hoc path between nodes in local IoT networks is not supported in basis RPL protocol. Thus, in this paper, the proposed routing scheme provides both ad hoc path and Infra path through gateway, supporting basis RPL protocol simultaneously. Through simulation, we show that the proposed routing scheme with zone based path selection scheme improves the performance of the success rate of end-to-end data transmission and the end-to-end delay, compared to basis RPL protocol.

An Identification Technique Based on Adaptive Radial Basis Function Network for an Electronic Odor Sensing System

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.151-155
    • /
    • 2011
  • A variety of pattern recognition algorithms including neural networks may be applicable to the identification of odors. In this paper, an identification technique for an electronic odor sensing system applicable to wound state monitoring is presented. The performance of the radial basis function(RBF) network is highly dependent on the choice of centers and widths in basis function. For the fine tuning of centers and widths, those parameters are initialized by an ill-conditioned genetic fuzzy c-means algorithm, and the distribution of input patterns in the very first stage, the stochastic gradient(SG), is adapted. The adaptive RBF network with singular value decomposition(SVD), which provides additional adaptation capabilities to the RBF network, is used to process data from array-based gas sensors for early detection of wound infection in burn patients. The primary results indicate that infected patients can be distinguished from uninfected patients.