• Title/Summary/Keyword: Basin model

Search Result 1,708, Processing Time 0.033 seconds

Estimation of Available Permit Water for Considering the Evaporation of Multipurpose Dams in Nakdong River Basin (증발량을 고려한 낙동강유역 다목적댐의 가용허가수량 추정)

  • Kim, Sun Joo;Park, Ki Chun;Park, Hee Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • The dam plan quantity of constructive and water supply quantity of present time are showing a difference with change in climate and augmentation of water demand for multipurpose dams in Nakdong river basin. But revaluates a water supply ability the method or the process is official for is not taking a position, so actual condition applies the plan quantity of dam constructive. Considers various situation of actual multipurpose dam from research sees consequently and in K-WEAP is an integrated water resources evaluation plan model applies as water permit availability multipurpose dam, currently water permit availability comparison, analyzed. In this study, the natural daily flow data and apply the dimensions of the reservoir, and for more than 30 years of the long-term water balance analysis conducted by Date Nakdong river basin can supply reservoirs are large quantity of permits available is presented.

The Analysis of Geomorphologic Instantaneous Unit Hydrougraph by the Channel Network (하도망의 기하학적 특성을 이용한 지형학적 순간단위도 해석)

  • 조홍제;이상배
    • Water for future
    • /
    • v.23 no.1
    • /
    • pp.89-98
    • /
    • 1990
  • This study is developed the runoff analysis method that is used the geomorphologic instantaneous unit hydrograph to the relative role of network geometry in a basin. The quantitative expressions for the geomorphologic characteristics of a basin are used Shreve's link sepration and width function method. The network geometry are used Weibull's distribution as probability model of the width function, the structural characteristics of channel networks and the other geomorphologic parameters for the gaged basin.

  • PDF

Land Cover Classification over Yellow River Basin using Land Cover Classification over Yellow River Basin using

  • Matsuoka, M.;Hayasaka, T.;Fukushima, Y.;Honda, Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.511-512
    • /
    • 2003
  • The Terra/MODIS data set over Yellow River Basin, China is generated for the purpose of an input parameter into the water resource management model, which has been developed in the Research Revolution 2002 (RR2002) project. This dataset is mainly utilized for the land cover classification and radiation budget analysis. In this paper, the outline of the dataset generation, and a simple land cover classification method, which will be developed to avoid the influence of cloud contamination and missing data, are introduced.

  • PDF

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.39-50
    • /
    • 2019
  • This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.

Water resources potential assessment of ungauged catchments in Lake Tana Basin, Ethiopia

  • Damtew, Getachew Tegegne;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.217-217
    • /
    • 2015
  • The objective of this study was mainly to evaluate the water resources potential of Lake Tana Basin (LTB) by using Soil and Water Assessment Tool (SWAT). From SWAT simulation of LTB, about 5236 km2 area of LTB is gauged watershed and the remaining 9878 km2 area is ungauged watershed. For calibration of model parameters, four gauged stations were considered namely: Gilgel Abay, Gummera, Rib, and Megech. The SWAT-CUP built-in techniques, particle swarm optimization (PSO) and generalized likelihood uncertainty estimation (GLUE) method was used for calibration of model parameters and PSO method were selected for the study based on its performance results in four gauging stations. However the level of sensitivity of flow parameters differ from catchment to catchment, the curve number (CN2) has been found the most sensitive parameters in all gauged catchments. To facilitate the transfer of data from gauged catchments to ungauged catchments, clustering of hydrologic response units (HRUs) were done based on physical similarity measured between gauged and ungauged catchment attributes. From SWAT land use/ soil use/slope reclassification of LTB, a total of 142 HRUs were identified and these HRUs are clustered in to 39 similar hydrologic groups. In order to transfer the optimized model parameters from gauged to ungauged catchments based on these clustered hydrologic groups, this study evaluates three parameter transfer schemes: parameters transfer based on homogeneous regions (PT-I), parameter transfer based on global averaging (PT-II), and parameter transfer by considering Gilgel Abay catchment as a representative catchment (PT-III) since its model performance values are better than the other three gauged catchments. The performance of these parameter transfer approach was evaluated based on values of Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The computed NSE values was found to be 0.71, 0.58, and 0.31 for PT-I, PT-II and PT-III respectively and the computed R2 values was found to be 0.93, 0.82, and 0.95 for PT-I, PT-II, and PT-III respectively. Based on the performance evaluation criteria, PT-I were selected for modelling ungauged catchments by transferring optimized model parameters from gauged catchment. From the model result, yearly average stream flow for all homogeneous regions was found 29.54 m3/s, 112.92 m3/s, and 130.10 m3/s for time period (1989 - 2005) for region-I, region-II, and region-III respectively.

  • PDF

Rock physics modeling in sand reservoir through well log analysis, Krishna-Godavari basin, India

  • Singha, Dip Kumar;Chatterjee, Rima
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.99-117
    • /
    • 2017
  • Rock physics modeling of sandstone reservoir from gas fields of Krishna-Godavari basin represents the link between reservoir parameters and seismic properties. The rock physics diagnostic models such as contact cement, constant cement and friable sand are chosen to characterize reservoir sands of two wells in this basin. Cementation is affected by the grain sorting and cement coating on the surface of the grain. The models show that the reservoir sands in two wells under examination have varying cementation from 2 to more than 6%. Distinct and separate velocity-porosity and elastic moduli-porosity trends are observed for reservoir zones of two wells. A methodology is adopted for generation of Rock Physics Template (RPT) based on fluid replacement modeling for Raghavapuram Shale and Gollapalli Sandstones of Early Cretaceous. The ratio of P-wave velocity to S-wave velocity (Vp/Vs) and P-impedance template, generated for this above formations is able to detect shale, brine sand and gas sand with varying water saturation and porosity from wells in the Endamuru and Suryaraopeta gas fields having same shallow marine depositional characters. This RPT predicted detection of water and gas sands are matched well with conventional neutron-density cross plot analysis.

Climate Change Impacts on Paddy Irrigation Requirement in the Nakdong River Basin (기후변화가 낙동강 권역의 논 관개용수 수요량에 미치는 영향)

  • Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • The impacts of climate change on paddy irrigation requirements for Nakdong river basin in Korea have been analyzed. The HadCM3 model outputs for SRES A2 and B2 scenarios and International Water Management Institute $10'{\times}10'$ pixels observed data were used with kriging method. Maps showing the predicted spatial variations of changes in climate parameters and paddy irrigation requirements have been produced using the GIS. The results showed that the average growing season temperature was projected to increase by $2.2^{\circ}C$ (2050s A2), $0.0^{\circ}C$ (2050s B2), $3.7^{\circ}C$ (2080s A2) and $2.9^{\circ}C$ (2080s B2) from the baseline (1961-1990) value of $21{\circ}C$. The average growing season rainfall was projected to increase by 15.2% (2050s A2), 24.2% (2050s B2), 41.4% (2080s A2) and 16.7% (2080s B2) from the baseline value of 900 mm. Average volumetric irrigation demands were projected to decrease by 3.7% (2050s A2), 7.0% (2050s B2), 10.2% (2080s A2) and 1.4% (2080s B2) from the baseline value of $1.25{\times}10^9\;m^3$. These results can be used for the agricultural water resources development planning in the Nakdong river basin for the future.

Plan for Flood Control Linked with Dam and River Basin (댐과 하천유역을 연계한 홍수 대응 방안 - 2020년 섬진강 홍수사상을 대상으로 -)

  • Kyong Oh Baek;Dong Yeol Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • In this study, a one-dimensional numerical model was constructed to propose a flood control plan linked with the dam and river basin for the flood events of the Seomjin River in 2020. The flood level reduction of the downstream river was tested based on a scenario operation of the Seomjingang Dam and was also analyzed when a storage pocket was newly constructed as one of the river basin measures. It was confirmed that Seomjingang Dam's flood control capacity would be increased if the flood limit level was drastically lowered from the current EL. 196.5 m to EL. 188.0 m. In addition, if the upper area of the (old) Geumgok Bridge (which suffered great damage due to the loss of the levee) is used as a storage pocket, it would be effective in preventing floods in the lower area of it. In the era of the climate crisis, more integrated flood management is needed and basic river management must be observed.

Water Demand and Supply Stability Analysis Using Shared Vision Model (Shared Vision 모형을 이용한 용수수급의 안정성 분석)

  • Jeong, Sang-Man;Lee, Joo-Heon;Ahn, Joong-Kun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.569-579
    • /
    • 2004
  • Recently, the extreme drought is often occurred due to the global warming and the serious weather changes. Also, the problems of the water pollution In the developed areas, the oppositions from people in the upper stream area and water concession from the local governments affect the national request to get more clean water resources in upper stream of the undeveloped areas. It also brings on the necessity of recognition for water supply managements. Therefore, as the water demand is rapidly changes in the metropolitan areas, the capability of water supply from the north Han river basin dams should be appropriately investigated. In this study, we developed a simulation system using STELLA (equation omitted) software environment, a shared vision model, to analyze the possibility of the stable water supply from north Han river basin dams. Also, three different rules are applied on this model by dividing the water level to minimum(Rule 1), medium(Rule 2) and maximum(Rule 3). Using the rules, the safety yield changes are analyzed for dam rule curve of the reservoir and hydropower release.

Parameter Estimation of Storage Function Method using Metamodel (메타모델을 이용한 저류함수법의 매개변수추정)

  • Chung, Gun-Hui;Oh, Jin-A;Kim, Tae-Gyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.81-87
    • /
    • 2010
  • In order to calculate the accurate runoff from a basin, nonlinearity in the relationship between rainfall and runoff has to be considered. Many runoff calculation models assume the linearity in the relationship or are too complicated to be analyzed. Therefore, the storage function method has been used in the prediction of flood because of the simplicity of the model. The storage function method has five parameters with related to the basin and rainfall characteristics which can be estimated by the empirical trial and error method. To optimize these parameters, regression method or optimization techniques such as genetic algorithm have been used, however, it is not easy to optimize them because of the complexity of the method. In this study, the metamodel is proposed to estimate those model parameters. The metamodel is the combination of artificial neural network and genetic algorithm. The model is consisted of two stages. In the first stage, an artificial neural network is constructed using the given rainfall-runoff relationship. In the second stage, the parameters of the storage function method are estimated using genetic algorithm and the trained artificial neural network. The proposed metamodel is applied in the Peong Chang River basin and the results are presented.