• Title/Summary/Keyword: Basin model

Search Result 1,708, Processing Time 0.028 seconds

Assessment of Agricultural Water Supply Capacity Using MODSIM-DSS Coupled with SWAT (SWAT과 MODSIM-DSS 모형을 연계한 금강유역의 농업용수 공급능력 평가)

  • Ahn, So Ra;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.507-519
    • /
    • 2013
  • This study is to evaluate agricultural water supply capacity in Geum river basin (9,865 $km^2$), one of the 5 big river basin of South Korea using MODSIM-DSS (MODified SIMyld-Decision Support System) model. The model is a generalized river basin decision support system and network flow model developed at Colorado State University designed specifically to meet the growing demands and pressures on river basin management. The model was established by dividing the basin into 14 subbasins and the irrigation facilities viz. agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were grouped and networked within each subbasin and networked between subbasins including municipal and industrial water supplies. To prepare the inflows to agricultural reservoirs and multipurpose dams, the Soil and Water Assessment Tool (SWAT) was calibrated using 6 years (2005-2010) observed dam inflow and storage data. By MODSIM run for 8 years from 2004 to 2011, the agricultural water shortage had occurred during the drought years of 2006, 2008, and 2009. The agricultural water shortage could be calculated as 282 $10^6m^3$, 286 $10^6m^3$, and 329 $10^6m^3$ respectively.

Development and application of the estimation method of flood damage in the ungauged basin using satellite data (위성자료를 활용한 미계측유역의 홍수피해액 추산기법 개발 및 적용)

  • Yeom, Woong-Sun;Park, Dong-Hyeok;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1183-1192
    • /
    • 2020
  • Economic analysis is a basic step in establishing disaster mitigation measures, but it is difficult to verify the results due to uncertainty. Therefore, the scope of investigation and analysis is wide. However, it is difficult to predict the amount of damage caused by flooding because the collection of relevant data is limited in the ungauged basin. In this study, distributed runoff analysis and flooding analysis were performed, and a method of estimating the amount of flood damage in the ungauged basin was proposed using collectible social and economic indicators and flood analysis results. For distributed runoff analysis and flooding analysis, GRM (Grid based Rainfall-runoff Model) and G2D (Grid based 2-Dimensional land surface flood model) developed by Korea Institute of Civil engineering and Building Technology were used. The method of substituting collectible social and economic indicators into the simple method and improvement method was used to estimate the amount of flood damage. As a result of the study, it was possible to estimate the amount of flood damage using satellite data and social and economic indicators in the ungauged basin.

The Analysis of Water Supply Capacity using Reliability Criteria - for the Nakdong River Basin - (신뢰성 기준을 적용한 용수공급능력의 해석 - 낙동강유역을 중심으로 -)

  • 차상화;지홍기;이순탁
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1227-1233
    • /
    • 2002
  • In general, the evaluation of water supply capacity is important factor to establish various establishment of water resource supply plan include water resource security and determination of dam's mass. But former researchs about estimation of water supply capacity were lack in continunity of evaluation basis, and didn't excute analysis on reliability criteria also. In this study, Nakdong river was selected for study basin, and then water supply capacity was analyzed by HEC-5 model using identical reliability criteria.

OPTIMAL SHORT-TERM UNIT COMMITMENT FOR HYDROPOWER SYSTEMS USING DYNAMIC PROGRAMMING

  • Yi, Jae-eung
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.279-291
    • /
    • 2000
  • A mathematical model using dynamic programming approach is applied to an optimal unit commitment problem. In this study, the units are treated as stages instead of as state dimension, and the time dimension corresponds to the state dimension instead of stages. A considerable amount of computer time is saved as compared to the normal approach if there are many units in the basin. A case study on the Lower Colorado River Basin System is presented to demonstrate the capabilities of the optimal scheduling of hydropower units.

  • PDF

Development of Synthetic Unit Hydrograph using River Fractal Characteristics (하천의 프랙탈 특성을 이용한 합성단위유량도의 개발)

  • 차상화
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.61-70
    • /
    • 2002
  • This study was performed to analyze the river fractal characteristics using GIS (Geographic Information System). In this study, topographical factors in river basin were grid-analyzed for each cell size and scale using GIS and regression formula was derived by analyzing correlation among topographical factors and cell size which were calculated here. And, a new rainfall-runoff model which is considering the calculated fractal dimension was developed to apply fur a river basin.

Recession Characteristics Analysis of Ssangchi Watershed (쌍치유역의 감수특성 분석)

  • 이재형;윤재민;이희주;박정인
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.459-464
    • /
    • 1999
  • The objective of this study is to analyze hydrologic recessiioon curve at the outlet of the ssangchi basin. For the development of recession equation, the initial discharge(Q0) and the recession parameters are estimated . It is shown that the accurate estimates of recession curve is easily obtained . The obtained parameters can be related to the basin characteristics, drainge area, and the total stream length so that they can be used for the development of the regional low flow estimation model.

  • PDF

Application of Artificial Intelligence Technology for Dam-Reservoir Operation in Long-Term Solution to Flood and Drought in Upper Mun River Basin

  • Areeya Rittima;JidapaKraisangka;WudhichartSawangphol;YutthanaPhankamolsil;Allan Sriratana Tabucanon;YutthanaTalaluxmana;VarawootVudhivanich
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.30-30
    • /
    • 2023
  • This study aims to establish the multi-reservoir operation system model in the Upper Mun River Basin which includes 5 main dams namely, Mun Bon (MB), Lamchae (LC), Lam Takhong (LTK), Lam Phraphoeng (LPP), and Lower Lam Chiengkrai (LLCK) Dams. The knowledge and AI technology were applied aiming to develop innovative prototype for SMART dam-reservoir operation in future. Two different sorts of reservoir operation system model namely, Fuzzy Logic (FL) and Constraint Programming (CP) as well as the development of rainfall and reservoir inflow prediction models using Machine Learning (ML) technique were made to help specify the right amount of daily reservoir releases for the Royal Irrigation Department (RID). The model could also provide the essential information particularly for the Office of National Water Resource of Thailand (ONWR) to determine the short-term and long-term water resource management plan and strengthen water security against flood and drought in this region. The simulated results of base case scenario for reservoir operation in the Upper Mun from 2008 to 2021 indicated that in the same circumstances, FL and CP models could specify the new release schemes to increase the reservoir water storages at the beginning of dry season of approximately 125.25 and 142.20 MCM per year. This means that supplying the agricultural water to farmers in dry season could be well managed. In other words, water scarcity problem could substantially be moderated at some extent in case of incapability to control the expansion of cultivated area size properly. Moreover, using AI technology to determine the new reservoir release schemes plays important role in reducing the actual volume of water shortfall in the basin although the drought situation at LTK and LLCK Dams were still existed in some periods of time. Meanwhile, considering the predicted inflow and hydrologic factors downstream of 5 main dams by FL model and minimizing the flood volume by CP model could ensure that flood risk was considerably minimized as a result of new release schemes.

  • PDF

Analysis of Hydrologic Geo-Spatial Information Using Runoff-Management Model (유출관리모형을 활용한 수문학적 공간정보 분석)

  • Lee, Sang-Jin;Noh, Joon-Woo;Ahn, Jung-Min;Kim, Joo-Cheol
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • GIS (Geographic Information System) is very useful in describing basin wide geographic characteristics and hydrologic analysis. This study estimated long term hydrologic variations in the Geum river basin using the SSARR rainfall runoff simulation model to provide reliable hydrologic information associated with rainfall runoff management module. Calibrated various hydrologic information such as soil moisture index, water use, direct and base flow are generated using GIS tools to display spatial hydrologic information in the unit of subbasin of target watershed. In addition, the graphic user interface toolkit designed for data compilation is expected to support efficient basin wide rainfall runoff analysis.

  • PDF

Analysis of the Crop Damage Area Related to Flood by Climate Change Using a Constrained Multiple Linear Regression Model (구속 다중선형회귀 모형을 이용한 기후변화에 따른 농작물 홍수 피해 면적 분석)

  • Kim, Myojeong;Kim, Gwangseob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • In this study, the characteristics of crop damage area by flooding for 113 middle range watersheds during 2000-2016 were analyzed and future crop damage area by flooding were analyzed using 13 GCM outputs such as hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount associated with RCP 4.5 and RCP 8.5 scenarios and watershed characteristic data such as DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity, and crop damage area by flooding. A constrained multiple linear regression model was used to construct the relationships between the crop damage area by flooding and other variables. Future flood index related to crop damage may mainly increase in the Mankyung watershed, Southwest part of Youngsan and Sumjin river basin and Southern part of Nackdong river basin. Results are useful to identify watersheds which need to establish strategies for responding to future flood damage.

Evaluation of GIS-based Soil Erosion Amount with Turbid Water Data (탁수자료를 이용한 GIS 기반의 토사유실량 평가)

  • Lee, Geun-Sang;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.75-81
    • /
    • 2004
  • Because geological types and land cover conditions of Imha basin have a very weak characteristics to soil erosion, most soil particles (low into river and bring about high density turbidity in Imha reservoir when it rains a lot. This study used GIS-based RUSLE model and analyzed soil erosion to make basic data for the countermeasures of turbidity reduction in Imha reservoir. Total soil erosion amounts was evaluated as 5,782,829 ton/yr using rainfall data(2003) and especially Dongbu-basin was extracted as most source area or soil erosion among Imha sub-basin. Also it was evaluated that soil erosion amount by RUSLE model was suitable by applying turbidity survey data.

  • PDF