• Title/Summary/Keyword: Basin model

Search Result 1,702, Processing Time 0.033 seconds

Parameter Estimation of Runoff Model Using the Genetic Algorithm (유전자 알고리즘을 이용한 유출모형의 매개변수 추정)

  • 조현경;이영화
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1109-1116
    • /
    • 2003
  • The genetic algorithm is investigated fer parameters estimation of SED (storage - effective drainage) model from the Wi-stream watershed in Nakdong river basin. In the practical application of model, as a number of watershed parameters do not measure directly, it is desirable to make a good estimation from the known rainfall and runoff data. For the estimation of parameters of the SED model using the genetic algorithm, parameters of Green-Ampt equation(SM, K$\_$s/) for the estimation of an effective rainfall and initial storage(y$\_$in/) used in SED model are obtained a regression equation with 5, 10, 20 days antecedent precipitation. And as a consequence of computation, the parameters were obtained to satisfy the proposed objective function. From the comparison of observed and computed hydrographs, it shows a good agreement in the shape and the rising limb, peak, falling limb of hydrograph, so the SED model using the genetic algorithm shows a suitable model for runoff analysis in river basin.

Modeling Sedimentation of Fine-grained Sediments in a Rectangular Basin (장방형 해분내의 세립 퇴적물 퇴적모형)

  • Hyo Jin Kang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.38-44
    • /
    • 1991
  • A simple box model was applied to the sedimentation of fine-grained sediments in a rectangular basin. Using the model explanation of the net depositional process of One-grained sediments in a small tide-dominated rocky embayment was possible by a careful evaluation of coefficients for erosion and deposition. For a basin with an inlet through which the exchange of suspended sediments occurs between open sea. the model shows that the time-averaged concentration of suspended sediments for a tidal cycle reaches a steady state initial abrupt change in concentration. During a tidal cycle deposition of sediments seems to occur when the magnitude of tidal currents is substantially low near the slack waters. Resuspension and erosion of bottom sediments take place near the peak of tidal currents. For a depositional basin. Gamagyang Bay, the duration and the maximum rate of deposition appear to be longer and higher than those of erosion. which accounts for the net deposition of fine-grained sediments. The time-averaged concentration of suspended sediment in the basin is slightly lower than that of the open water due to the net deposition. The instantaneous concentration of suspended sediments showed the maximum value about an hour before high water and the minimum about an hour after low water.

  • PDF

Analysis of the Phosphorus Contribution Rate by the Environment Fundamental Facilities Located in Upstream Basin of Paldang Lake (팔당호 상류수계에 위치한 환경기초시설의 인 기여도 분석)

  • Woo, Younggug;Park, Eunyoung;Jeon, Yangkun;Yang, Heejeong;Rim, Jaymyung
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1016-1027
    • /
    • 2010
  • The phosphorus contribution rate on water quality of North and South-Han River, and Gyungan-cheon by effluents from environmental fundamental facilities located in upstream basin of Paldang Lake were analyzed. QUALKO2 model was selected for the analysis of contrubution rate, and was constructed considering the location of the main point sources and all facilities in study area. The pollutant loading rates and arrival rates for each unit-watershed in study area were calculated for model operation. For the calibration and verification of model, 2006 water quality dataset from Ministry of Environment and the effluent loadings of the environmental fundamental facilities were used. Reliability Index (RI) method was used to estimate the validity of the results of calibration and verification. The phosphorous contribution rate(%) for each environmental fundamental facility were analyzed by excepting the effluent loading of the facility. The contribution rate was analyzed for each facility, facility groups separated by each main river and each unit-watershed. The main results of analysis for each facility are as follows; (i) the phosphorous contribution of B1 facility is 50%, which is the highest phosphorous contribution rate among those of nine facilities in the North-Han River Basin; (ii) the highest phosphorous contribution is 55.6% from J facility among eight facilities in the Gyungan Stream Basin; (iii) 40% from E treatment facility is the highest among those of twenty eight facilities in the South-Han River Basin.

Optimal Unit Commitment of Hydropower System Using Combined Mixed Integer Programming (통합혼합정수계획법 모형을 이용한 수력발전소의 최적 발전기 운영계획 수립)

  • Lee, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.525-535
    • /
    • 1999
  • An optimal unit commitment model for efficient management of water and energy resources in a basin using combined mixed integer programming is developed. The combined mixed integer programming model is able to solve the inconsistency problem that may occur from mixed integer programming models. The technique which enables the use of conditional constraints and either-or constraints in the linear programming is also suggested. As a result of applying the combined mixed integer programming model to Lower Colorado River Basin in United States. the basin efficiency is decreased by 1.53% from the results of the mixed integer programming, while it is increased by 0.67% from the results of the historical operation. It is found that the decreased allowable error between power supplies and demands in the combined mixed integer programming causes the decreased basin efficiency.

  • PDF

A Study on the Hydraulic Experiments of Modi Khola Hydroelectric in Nepal (네팔 Modi Khola 수력발전소 수리모형실험 연구)

  • 선우중호;박창근
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.107-120
    • /
    • 1995
  • This study is concerned with the hydraulic experiments of Modi Khola Hydroelectric in Nepal. The experimental domain consists of the intake structure and the settling basin. The intake structure was made by the undistorted model with the scale of 1:20, the settling basin by the distorted model with the scale of 1:10(vertical) and 1:15(horizontal). Based on the movable bed model theory, the 'Anthracite'($\rho_s$ =1.48) is chosen as a model material. According to the model tests, the installation of the guide wall with proper height and the proper control of the flushing gate are required for the effective flushing in the intake structure. In the settling basin a more proper design of the inlet in order to constrain the turbulence flow is required for an efficient sedimentation and the installation of another flushing pipe near the maximum sedimental area is required. Since the trap efficiency is measured about 95%, it is concluded that the design of the settling basin is proper.

  • PDF

Physicochemical water quality characteristics in relation to land use pattern and point sources in the basin of the Dongjin River and the ecological health assessments using a fish multi-metric model

  • Jang, Geon-Su;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.34-44
    • /
    • 2016
  • Background: Little is known about how chemical water quality is associated with ecological stream health in relation to landuse patterns in a watershed. We evaluated spatial characteristics of water quality characteristics and the ecological health of Dongjin-River basin, Korea in relation to regional landuse pattern. The ecological health was assessed by the multi-metric model of Index of Biological Integrity (IBI), and the water chemistry data were compared with values obtained from the health model. Results: Nutrient and organic matter pollution in Dongjin-River basin, Korea was influenced by land use pattern and the major point sources, so nutrients of TN and TP increased abruptly in Site 4 (Jeongeup Stream), which is directly influenced by wastewater treatment plants along with values of electric conductivity (EC), bacterial number, and sestonic chlorophyll-a. Similar results are shown in the downstream (S7) of Dongjin River. The degradation of chemical water quality in the downstream resulted in greater impairment of the ecological health, and these were also closely associated with the landuse pattern. Forest region had low nutrients (N, P), organic matter, and ionic content (as the EC), whereas urban and agricultural regions had opposite in the parameters. Linear regression analysis of the landuse (arable land; $A_L$) on chemicals indicated that values of $A_L$ had positive linear relations with TP ($R^2=0.643$, p < 0.01), TN ($R^2=0.502$, p < 0.05), BOD ($R^2=0.739$, p < 0.01), and suspended solids (SS; ($R^2=0.866$, p < 0.01), and a negative relation with TDN:TDP ratios ($R^2=0.719$, p < 0.01). Conclusions: Chemical factors were closely associated with land use pattern in the watershed, and these factors influenced the ecological health, based on the multimetric fish IBI model. Overall, the impairments of water chemistry and the ecological health in Dongjin-River basin were mainly attributes to point-sources and land-use patterns.

The selection of soil erosion source area of Dechung basin (대청호유역의 토사유실 원인지역 선정)

  • Lee, Geun-Sang;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1997-2002
    • /
    • 2007
  • This study selected soil erosion source area of Dechung basin by soil erosion estimation model and field survey for effective soil conservation planning and management. First, unit soil erosion amount of Dechung basin is analyzed using RUSLE (Revised Universal Soil Loss Equation) model based on DEM (Digital Elevation Model), soil map, landcover map and rainfall data. Soil erosion model is difficult to analyze the tracing route of soil particle and to consider the characteristics of bank condition and the types of crop, multidirectional field survey is necessary to choice the soil erosion source area. As the result of analysis of modeling value and field survey, Mujunamde-, Wondang-, Geumpyong stream are selected in the soil erosion source area of Dechung basin. Especially, these areas show steep slope in river boundary and cultivation condition of crop is also weakness to soil erosion in the field survey.

  • PDF

The Comparative Estimation of Soil Erosion for Andong and Imha Basins using GIS Spatial Analysis (GIS 공간분석을 이용한 안동·임하호 유역의 토사유실 비교 평가)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.341-347
    • /
    • 2006
  • Geographically Imha basin is adjacent to Andong basin, but the occurrence of turbid water in each reservoir by storm events shows big differences. Hence, it is very important to identify the reason for these large differences. This study compared and analyzed soil erosion using the semi-empirical soil erosion model, RUSLE for both Imha and Andong basin, especially with emphasis on high-density turbid water. The agricultural district, which is the most vulnerable to soil erosion, was intensively analyzed based on land cover map produced by Ministry of Environment. As a result, the portion of the agricultural area is 11.88% for Andong basin, while it is 14.95% for Imha basin. Also all RUSLE factors excepts practice factor turned out to be higher for Imha basin. This means that the basin characteristics such as soil texture, terrain, and land cover for Imha basin is more vulnerable to soil erosion. Estimation of soil erosion by RUSLE for Andong and Imha basin is 1,275,806 ton and 1,501,608 ton, respectively, showing higher soil erosion by 225,802 ton for Imha basin.

Computations of Overland Flows and Flood Control Analysis on the Cheat River Basin by HEC-1 Model (HEC-1 컴퓨터 모델에 의한 Cheat강 유역의 지표유출 및 홍수분석)

  • Chun Moo-kab
    • KCID journal
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 1995
  • 본 연구에서는 미국 West Virgini주 동북부에 위치한 Cheat River Basin 일원에 1985. 11월에 발생한 대홍수를 HEC-1 Computer Model로 재현시켰다. 전체 유역을 수문 및 지형 특성에 따라 각 소유역으로 나누어 각소유역에 대해 지표면유출을 계산하였다. 적용된 단위도는 본 유역의 지형 특성을 고려 Snyder's Unit Hydrograph를 이용하였다. Cheat River 전체에 대한 홍수조절 계획이 본 HEC-1

  • PDF

Application of Rainfall-Runoff Models and Provision of Radar Rainfall Data during Flood in Imjin River Basin (임진강 유역의 홍수기 강우-유출모형 적용 및 레이더강우 자료의 활용방안)

  • Kim Seong-joon;Park Roh-hyuk;Maeng Sung-jin
    • KCID journal
    • /
    • v.5 no.1
    • /
    • pp.47-62
    • /
    • 1998
  • The purpose of this study is to evaluate storm runoff models of Imjin river basin(8,117.5$km^2$) for the provision of radar rainfall situation. Two lumped models, Storage Function Model(SFM) and HEC-1 model which are now in use broadly and prov

  • PDF