• Title/Summary/Keyword: Basin

Search Result 5,184, Processing Time 0.032 seconds

Breeding of Middle Season Pear Cultivar 'Shinil' with Attractive Appearance for Chuseok Season (외관(外觀)이 수려한 추석(秋夕) 출하용 중생종 배 '신일(新一)' 육성(育成))

  • Kim, Whee-Cheon;Hwang, Hae-Sung;Shin, Yong-Uk;Shin, Il-Sheob;Lee, Don-Kyun;Kang, Sang-Jo;Cheon, Byung-Deok;Moon, Jong-Youl;Kim, Jung-Ho
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.60-65
    • /
    • 2001
  • 'Shinil' pear cultivar (Pyrus pyrifolia Nakai) which was originated in a cross between 'Shinko' (non-patented, released in 1941) and 'Hosui' (non-patented, released in 1972) in 1978 was released as a middle season harvest variety. Its usual picking time coincided with 'Chuseok' season which is one of the most famous national holiday in Korea. The fruit showed high soluble solids content and good appearance. The cultivar was preliminarily selected in 1991, and its regional adaptability was evaluated in the name of 'Wonkyo Na-13' at 9 sites for four years from 1992, and finally selected and named in 1995. 'Shinil' is medium in tree vigor like 'Hosui' and spreading in tree habit as 'Niitaka', a leading cultivar in Korea, and consistently very productive. It has high resistance to black rot caused by Alternaria kikuchiana and pear necrotic spot caused by pear necrotic spot virus. Its full bloom is one day earlier than that of 'Niitaka' cultivar and harvest time is September 25 at Suwon area which is 3 days later than that of 'Hosui'. Fruit is round in shape with a deep medium stalk cavity and medium calyx basin and has attractive light yellow brown skin color. The fruit weight ranges between 300 and 400 g, which is similar to 'Chojuro', 'Shinko', and 'Hosui'. Soluble solid content is approximately at the level of 13-14 Brix, which is higher than that of 'Chojuro'. The flesh is cream-white, very juicy, and light grit with soft and fine texture.

  • PDF

Geochemistry and Genesis of the Guryonsan(Ogcheon) Uraniferous Back Slate (구룡산(九龍山)(옥천(決川)) 함(含)우라늄 흑색(黑色) 점판암(粘板岩)의 지화학(地化學) 및 성인(成因))

  • Kim, Jong Hwan
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.35-63
    • /
    • 1989
  • Geochemical characteristics of the Guryongsan (Ogcheon) uraniferous black slate show that this is an analogue to the conventional Chattanooga and Alum shales in occurrences. Whereas, its highest enrichment ratio in metals including uranium, among others, is explained by the cyclic sedimentation of the black muds and quartz-rich silts, and the uniform depositional condition with some what higher pH condition compared to the conditions of the known occurrences. The cyclic sedimentation, caused by the periodic open and close of the silled basin, has brought about the flush-out) of the uranium depleted water and the recharge with the new metal-rich sea water, which consequently contributed to the high concentration of metals in mud. The metal-rich marine black muds, which mostly occur in the early to middle Palaeozoic times, is attributed by the geologic conditions which related to the atmospheric oxygen contents, and these are scarcely met in the late Precambrian and/or with the onset of Palaeozoic era in the geologic evolution of the earth.

  • PDF

Analysis on Probable Rainfall Intensity in Kyungpook Province (경북지방(慶北地方)의 확률(確率) 강우강도(降雨强度)에 대(對)한 분석(分析))

  • Suh, Seung Duk;Park, Seung Young
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.77-86
    • /
    • 1986
  • The purpose of this study is to estimate an optimum formula of rainfall intensity on basis of the characteristics for short period of rainfall duration in Kyungpook province for the design of urban sewerage and small basin drain system. Results studied are as follows; 1. The optimum method for Taegu and Pohang, Iwai's and Gumbel-Chow's method are recommended respectively. 2. The opotimum type of rainfall intensity for these area, $I=\frac{a}{\sqrt{t}+b}$ (Japanese type), is confirmed with 2.52~4.17 and 1.86~4.54 as a standard deviation for Taegu and Pohang respectively. The optimum formula of rainfall intensity are as follows. Taegu : T : 200 year - $I=\frac{824}{\sqrt{t}+1.5414}$ T : 100 year - $I=\frac{751}{\sqrt{t}+1.4902}$ T : 50 year - $I=\frac{678}{\sqrt{t}+1.4437}$ T : 30 year - $I=\frac{623}{\sqrt{t}+1.4017}$ T : 20 year - $I=\frac{580}{\sqrt{t}+1.3721}$ T : 10 year - $I=\frac{502}{\sqrt{t}+1.3145}$ T : 5 year - $I=\frac{418}{\sqrt{t}+1.2515}$ Pohang : T : 200 year - $I=\frac{468}{\sqrt{t}+1.1468}$ T : 100 year - $I=\frac{429}{\sqrt{t}+1.1605}$ T : 50 year - $I=\frac{391}{\sqrt{t}+1.1852}$ T : 30 year - $I=\frac{362}{\sqrt{t}+1.2033}$ T : 20 year - $I=\frac{339}{\sqrt{t}+1.2229}$ T : 10 year - $I=\frac{299}{\sqrt{t}+1.2578}$ T : 5 year - $I=\frac{257}{\sqrt{t}+1.3026}$ 3. Significant I.D.F. curves derived should be applied to estimate a suitable rainfall intensity and rainfall duration.

  • PDF

Change of Hydraulic Properties of Sand due to Fine Diatom Particle Migration (미세 Diatom 입자 이동에 의한 모래지반의 투수 특성 변화)

  • Pyo, Won-Mi;Lee, Jong-Sub;Lee, Joo Yong;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.19-32
    • /
    • 2018
  • During the process of gas hydrate extraction in the deep seabed, fine diatom particle migration occurs, which causes the seabed slope failure and the productivity deterioration of the gas hydrate. Therefore, a study related with the changes of the ground characteristics due to the fine particle migration is required. The objective of this study is to investigate the change of hydraulic properties of sand due to the migration of fine diatom particle in sandy soils. In order to simulate the sediments of the Ulleung basin gas hydrate in the East Sea, fifteen sand-diatom mixtures that have different diatom volume fractions (DVF) are prepared. During the falling head permeability tests, the coefficients of permeability are measured according to the DVF. In addition, for the simulation of the fine diatom particle migration, constant head permeability tests are conducted by applying the hydraulic pressures of 3 kPa, 6kPa, and 9 kPa on a specimen composed of two layers: a specimen with 50% DVF in upper layer and a specimen with 0% DVF in lower layer. Furthermore, the coefficient of permeability and the electrical resistivity of the migration zone are measured during the constant head permeability test. The falling head permeability tests show that the coefficient of permeability decreases as the DVF of the specimen increases. In addition, the gradient of the coefficient of permeability curve decreases in the DVF range of 10%~50% compared with that of 0%~10%, and increases above 50% in DVF. The result of constant head permeability tests shows that the coefficient of permeability decreases and electrical resistivity increases in the migration zone due to the fine diatom particle migration. This study demonstrates that fine diatom particle migration reduces the permeability of the soils and the behavior of the migration zone due to the fine diatom particle migration may be estimated based on the reversal relationship between the coefficient of permeability and the electrical resistivity.

Studies on the Desertification Combating and Sand Industry Development(III) - Revegetation and Soil Conservation Technology in Desertification-affected Sandy Land - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(III) - 중국(中國)의 황막사지(荒漠沙地) 녹화기술분석(綠化技術分析) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Choi, Hyung-Tae;Lee, Sang-Ho;Park, Joo-Won;Wang, Lixian;Zhang, Kebin;Sun, Baoping
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.1
    • /
    • pp.90-104
    • /
    • 2001
  • This study is aimed to analyze and to evaluate the revegetation and soil conservation technology in desertification-affected sandy land, resulting from the project of "Studies on the desertification combating and sand industry development". Main native plants for combating desertification : The general characteristics of vegetation distribution in desertified regions are partially concentrated vegetation distribution types including the a) desert plants in low zone of desert or sanddune of depressed basin, b) salt-resistant plants around saline lakes, c) grouped vegetation with Poplar and Chinese Tamarix of freshwater-lakes, saline-lakes and river-banks, d) gobi vegetation of gravel desert and e) grassland and oasis-woods around the alluvial fan of rivers, etc. Generally, Tamarix ehinensis Lour., Haloxylon ammodendron Bunge., Calligonum spp., Populus euphratica Oliver., Elaeagnus angustifolia L., Ulmus pumila L., Salix spp., Hedysarum spp., Caragana spp., Xanthoceras sorbifolia Bunge., Nitraria tangutorum Bobr., Lespedeza bicolor, Alhagi sparsifolia Shap., Capparis spinosa L., Artemisia arenaria DC., etc. are widely distributed in desertified regions. It is necessary for conducting research in the native plants in desertified regions. Analysis of intensive revegetation technology system for combating desertification : In the wind erosion region, the experimental research projects of rational farming systems (regional planning, shelterbelts system, protection system of oasis, establishment of irrigation-channel networks and management technology of enormous farmlands, etc.), rational utilization technology of plant resources (fuelwood, medicinal plants, grazing and grassland management, etc.), utilization technology of water resources (management and planning of watershed, construction of channel and technology of water saving and irrigation, etc.), establishment of sheltetbelts, control of population increase and increased production technology of agricultural forest, fuelwood and feed, etc. are preponderantly being promoted. And in water erosion region, the experimental research projects of development of rational utilization technology of land and vegetation, engineering technology and protection technology of crops, etc. are being promoted in priority. And also, the experimental researches on the methods of utilization of water (irrigation, drainage, washing and rice cultivation, etc.), agricultural methods (reclamation of land, agronomy, fertilization, seeding, crop rotation, mixed-cultivation and soil dressing works, etc.) and biological methods (cultivation of salt-resistant crops and green manure and tree plantation, etc.) for improvement of saline soil and alkaline soil in desertified-lands are actively being promoted. And the international cooperations on the revegetation technology development projects of desertified-lands are sincerely being required.

  • PDF

A Development of Automatic Lineament Extraction Algorithm from Landsat TM images for Geological Applications (지질학적 활용을 위한 Landsat TM 자료의 자동화된 선구조 추출 알고리즘의 개발)

  • 원중선;김상완;민경덕;이영훈
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.175-195
    • /
    • 1998
  • Automatic lineament extraction algorithms had been developed by various researches for geological purpose using remotely sensed data. However, most of them are designed for a certain topographic model, for instance rugged mountainous region or flat basin. Most of common topographic characteristic in Korea is a mountainous region along with alluvial plain, and consequently it is difficult to apply previous algorithms directly to this area. A new algorithm of automatic lineament extraction from remotely sensed images is developed in this study specifically for geological applications. An algorithm, named as DSTA(Dynamic Segment Tracing Algorithm), is developed to produce binary image composed of linear component and non-linear component. The proposed algorithm effectively reduces the look direction bias associated with sun's azimuth angle and the noise in the low contrast region by utilizing a dynamic sub window. This algorithm can successfully accomodate lineaments in the alluvial plain as well as mountainous region. Two additional algorithms for estimating the individual lineament vector, named as ALEHHT(Automatic Lineament Extraction by Hierarchical Hough Transform) and ALEGHT(Automatic Lineament Extraction by Generalized Hough Transform) which are merging operation steps through the Hierarchical Hough transform and Generalized Hough transform respectively, are also developed to generate geological lineaments. The merging operation proposed in this study is consisted of three parameters: the angle between two lines($\delta$$\beta$), the perpendicular distance($(d_ij)$), and the distance between midpoints of lines(dn). The test result of the developed algorithm using Landsat TM image demonstrates that lineaments in alluvial plain as well as in rugged mountain is extremely well extracted. Even the lineaments parallel to sun's azimuth angle are also well detected by this approach. Further study is, however, required to accommodate the effect of quantization interval(droh) parameter in ALEGHT for optimization.

A Technique Assessing Geological Lineaments Using Remotely Sensed Data and DEM : Euiseons Area, Kyungsang Basin (원격탐사자료와 수치표고모형을 이용한 지질학적 선구조 분석기술: 경상분지 의성지역을 중심으로)

  • 김원균;원중선;김상완
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.139-154
    • /
    • 1996
  • In order to evaluate the sensor`s look direction bias in the Landsat TM image and to estimate trends of primary geological lineaments, we have attempted to systematically compare lineaments in TM image, relief shadowed DEM's, and actual lineaments of geologic and topographic map through the Hough transform technique. Hough transform is known to be very effective to estimate the trend of geological lineaments, and help us to obtain the true trends of lineaments. It is often necessary to compensate the preferential enhancements of terrain lineaments in a TM image occurred by to look direction bias, and that can be achieved by utilizing an auxiliary data. In this study, we have successfully adopted the relief shadowed DEM in which the illuminating azimuth angle is perpendicular to look direction of a TM image for assessing true trends of geological lineaments. The results also show that the sum of four relief shadowed DEM's directional components can possibly be used as an alternative. In Euiseong-gun area where Sindong Group and Mayans Group are mainly distributed, geological lineaments trending $N5^{\circ}$~$10^{\circ}$W are dominant, while those of $N55^{\circ}$~$65^{\circ}$ W are major trends in Cheongsong-gun area where Hayang Group, Yucheon Group and Bulguksa Granite are distributed. Using relief shadowed DEM as an auxiliary data, we found the $N55^{\circ}$~$65^{\circ}$ W lineaments which are not cleanly observed in TM image over Euiseong-gun area. Compared with the trend of Gumchon and Gaum strike-slip faults, these lineaments are considered to be an extension of the faults. Therefore these strike-slip faults possibly extend up to Sindong Group in the northwest parts in the study area.

The Late Quaternary Pollen Analysis of Gokgyo River Basin in Asan-City, Korea - Focused on Vegetation and Climate Environment between the Last Glacial Maximum and the Late Glacial - (충남 아산 곡교천 유역의 제4기 후기 화분분석 - 최종빙기 최성기~만빙기 식생 및 기후환경에 주목하여 -)

  • PARK, Ji-Hoon;KIM, Sung-Tae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • The pollen analysis was performed targeting the valley plain alluvium of Jangjae-ri, Asan area in order to clarify the climate and vegetation environment of the Last glacial maximum and the Late glacial in terms of Gokgyo River Watershed In Asan-City, Korea. The sample collection point gets included in the current deciduous broadleaf forest zone (south cool temperate zone). The results are as follows. (1) The vegetation environment of about 19,300-14,100yrB.P. at the investigation area is mainly classified into YJ-I period and YJ-II period while YJ-Ia period is classified once again into YJ-Ia period and YJ-Ib period. YJ-Ia period (19,300-17,500yrB.P.) is correlated with the Last Glacial Maximum while the vegetation at the time has relatively a little wide distribution area of grassland compared to the forest and the forest vegetation of this time period is the mixed conifer and deciduous broad-leaved forest. YJ-Ib period (15,400-14,750yrB.P.) is correlated with the Late glacial (or the Last Glacial Maximum) and the distribution area of grassland became wider compared to the forest. While the forest vegetation of this time period is the mixed conifer and deciduous broad-leaved forest, a difference exists in terms of the dominant tree species. YJ-II period (about 14,650-14,100yrB.P.) is correlated with the Last glacial while the distribution area of grassland became even wider than the forest compared to the YJ-Ib in case of the vegetation at the time and the forest vegetation of this time period is the coniferous forest. (2) Both YJ-I period and YJ-II period were relatively cold and dry compared the End of Late Glacial (about 12,000-10,000yrB.P.)~Early Holocene (10,000-8,500yrB.P.), Also, YJ-II period was relatively colder than the YJ-I period and the YJ-Ib period was relatively more humid than the YJ-Ia period.

Petrography and mineral chemistry of Fe-Ti oxides for the Mesozoic granitoids in South Korea : a reconsideration on the classification of magnetite- and ilmenite-series (남한의 중생대 화강암의 Fe-Ti 산화광물에 대한 암석기재와 광물화학: 계열분류에 대한 재고찰)

  • 조등룡;권성택
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1994
  • We present petrography, mode and chemistry data for Fe-Ti oxide minerals from the Mesozoic granitoids in South Korea. Magnetites from the Daebo Uurassic) granites are nearly pure $Fe_3O_4$, while those from the Bulgugsa (Cretaceous) granites contain considerable amounts of Mn and Ti. This is probably related to rapid cooling of the Bulgugsa granites compared with slow cooling of Daebo granites, which is supported by geologic relations and hornblende geobarometry results of Cho and Kwon (1994) on the emplacement depth for these granites. The composition of ilmenite does not shew appreciable difference between the Daebo and Bulgugsa granites. However, $Fe_2O_3$ contents are higher for the ilmenites coexisting with magnetite than for those without magnetite. In the temperature vs. oxygen fugacity diagram, the Bulgugsa granites plot near Ni-NiO and QFM buffer curves, although only two samples show greater than the granite solidus temperature. The mode data suggest that both magnetite- and ilmenite-series exist in Daebo and Bulgusa granites from the Kyonggi massif, Ogcheon belt and Youngnam massif, while only magnetite-series exists in Bulgugsa granites from the Kyongsang basin. Many ilmenite-series granites occur in the Ogcheon belt, which might be related to assimilation of carboniferous sediments in the belt. The proportion (44 : 56) between ilmenite- and magnetite-series for the Daebo granites is significantly different from that of Ishihara et al. (1981) who showed, using magnetic susceptibility data, predominance of ilmenite-series (more than 70%) for the Daebo granites, which can be mainly attributed to preference in sampling and to wrong assignment of age for some plutons. We also found magnetite in weakly-magnetized Kanghwa granite which was formerly classified as ilmenite-series by Ishihara et al. (1981). The proportion of ilmenite-series increases in the order of hornblende biotite granite, biotite granite and two mica granite. We conclude from these observations that the ilmeniteseries granites might have originated from contamination of carboniferous crustal material and/or such source material.

  • PDF

Fractionation and Pollution Index of Heavy Metals in the Sangdong Tungsten Mine Tailings (광미에 존재하는 중금속의 분획화와 오염도 평가)

  • Yang, Jae-E.;Kim, Hee-Joung;Jun, Sang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2001
  • Enormous volumes of mining wastes from the abandoned and closed mines are disposed without a proper treatment in the upper Okdong River basin at Southeastern part of Kangwon Province. Erosion of these wastes contaminates soil, surface water, and sediments with heavy metals. Objectives of this research were to fractionate heavy metals in the mine tailing stored in the Sangdong Tungsten tailing dams and to assess the potential pollution index of each metal fraction. Tailing samples were collected from tailing dams at different depth and analyzed for physical and chemical properties. pH of tailings ranged from 7.3 to 7.9. Contents of total N and organic matter were in the ranges of 3.2~5.5%, and 1.3~9.1%, respectively. Heavy metals in the tailings were higher in the newly constructed tailing dam than those in the old dam. Total concentrations of metals in the tailings were in the orders of Zn > Cu > Pb > Ni > Cd, exceeded the corrective action level of the Soil Environment Conservation Law and higher than the natural abundance levels reported from uncontaminated soils. Relative distribution of heavy metal fractions was residual > organic > reducible > carbonate > adsorbed, reversing the degree of metal bioavailability. Mobile fractions of metals were relatively small compared to the total concentrations. Distribution of metals in the tailing dam profiles was metal specific. Concentrations of Cu at the surface of tailing dams were higher than those at the bottom. Pollution index (PI) values of each fraction of metals were ranged from 4.27 to 8.51 based on total concentrations. PI values of mobile fractions were lower than those of immobile fractions. Results on metal fractions and PI values of the tailing samples indicate that tailing samples were contaminated with heavy metals and had potential to cause a detrimental effects on soil and water environment in the lower part of the stream. A prompt countermeasure to prevent surface of tailings in the dams from water and wind erosions is urgently needed.

  • PDF