• 제목/요약/키워드: Basic catalyst

검색결과 200건 처리시간 0.022초

Addition of α,α-Difluoroiodomethyl Ketones to Alkenes with a Copper Catalyst

  • Kwak, Kyung-Chell;Lee, Woo-Yiel;Zheshan, Quan;Lee, Young-Hang;Yun, Young-Gab;Kwak, Gyu-Beum;Chung, Hun-Taeg;Kwon, Tae-Oh;Chai, Kyu-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.97-102
    • /
    • 2005
  • The addition reactions of $\alpha$,$\alpha$-difluoroiodomethyl n-butyl ketone, α,α-difluoroiodomethyl cyclohexyl ketone, or $\alpha$,$\alpha$-difluoroiodomethyl phenyl ketone to alkenes were successfully accomplished in good yields in the presence of copper powder. The reaction was also applicable to alkenes containing a variety of functional groups such as ester, trimethylsilyl, or ether group. Acetonitrile was determined to be the best solvent in the present study and the reaction was performed at 55 ${^{\circ}C}$ for 15-22 h. This reaction provides a new, efficient and general method for the synthesis of $\alpha$,$\alpha$-difluoro functionalized ketones.

우주추진기관용 단일추진제 추력기 연구개발 (Development of Monopropellant Thruster for Spacecraft Propulsion System)

  • 김수겸;원수희
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.295-296
    • /
    • 2012
  • In Korea, study of monopropellant thruster have been started from 1990s by KARI (Korea Aerospace Research Institute). 5N hydrazine thruster that is a first Koreanized hydrazine thruster, have been used as flight model for several satellite. In parallel, in order to retain core technology for monopropellant thruster, catalyst and test facility development have been carried out and successfully completed. On the basis of these technology, KARI is performing development of 1N/200N hydrazine thruster and basic research of green propellant thruster.

  • PDF

국내 사용 후 화학촉매제품의 재자원화 현황 및 향후 방향 (Status and Strategy on Recycling of Domestic Used Chemical Catalysts)

  • 김영춘;강홍윤
    • 자원리싸이클링
    • /
    • 제26권3호
    • /
    • pp.3-16
    • /
    • 2017
  • 화학촉매제품은 석유화학공정, 대기오염방지시설, 자동차 배기가스 정화 장치 등 다양한 분야에 적용되고 있다. 국내외 화학촉매 시장은 매년 증가하고 있는 추세이며, 그에 따라 발생되는 폐촉매량도 증가하고 있다. 탈황 폐촉매, 자동차 폐촉매 등 대부분의 사용 후 화학촉매제품은 유가금속을 함유하고 있어 경제적 가치와 자원 확보 측면에서 매우 중요한 순환자원이다. 이에 일부 도시광산업체를 통해 유가금속을 회수하는 재자원화 공정이 상용화 되어 있고, 사용 후 SCR 탈질 촉매제품은 일부 재제조를 통해 자원순환되고 있다. 이에 본 논문에서는 사용 후 화학촉매제품의 재자원화 산업 지원 정책 수립의 기초자료로 활용이 가능하도록 주요촉매제품별 국내 발생량 및 재자원화 현황을 조사 분석하였으며, 사용 후 화학촉매제품의 자원순환 활성화를 위한 발전과제를 제시하였다.

Research on Step-Type Chemical Liquid Deodorizer using Liquid Catalyst

  • WOO, Hyun-Jin;KWON, Lee-Seung;JUNG, Min-Jae;YEO, Og-Gyu;KIM, Young-Do;KWON, Woo-Taeg
    • 식품보건융합연구
    • /
    • 제6권5호
    • /
    • pp.19-25
    • /
    • 2020
  • The purpose of this study was to research and develop a step-type chemical liquid deodorizer including a liquid catalyst that can prevent civil complaints due to odor due to its excellent deodorizing performance. The main composition of chemical liquid deodorizer including liquid catalyst is cleaning deodorization, catalyst deodorization, chemical deodorization, water film plate, deodorization water circulation device, deodorization water injection device, catalyst management system, gas-liquid separation device, chemical supply device, deodorizer control panel, etc. It consists of a device. The air flow of the step-type liquid catalyst chemical liquid deodorizer is a technology that firstly removes basic odor substances, and the liquid catalyst installed in the subsequent process stably removes sulfur compounds, which are acidic odor substances, to discharge clean air. The efficiency of treating the complex odor of the prototype was 98.5% for the first and 99.6% for the second, achieving the target of 95%. The hydrogen sulfide treatment efficiency of the prototype was 100% for the first and 99.9% for the second, which achieved 95%, which was the target of the project. As a result, ammonia was removed by the reaction of ammonia and hydrogen sulfide.

염기성 촉매제를 이용한 염료감응 태양전지의 효율에 관한 연구 (A Study on the Efficiency of Dye Sensitized Solar Cell Employing TiO2 Photoelectrode Synthesized Using Basic Catalyst)

  • 기현철;정행윤;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.736-740
    • /
    • 2013
  • In this study, the influence of electrochemical properties by mixing Tetrabutylammonium hydroxide (TBAOH) and ammonium hydroxide (NH4OH) electrode on the dssc. The titanias were prepared using a sol-gel method by mixing Tetrabutylammonium hydroxide and Ammonium hydroxide. The $TiO_2$ nanopowder prepared by sol-gel methode, and to improve the distributed properties of $TiO_2$ nanopowder, the TBAOH and NH4OH was added. The I-V values of cells show that the Tetrabutylammonium has 6.51% efficiency.

Preparation of BaTiO3 Thick Film by an Interfacial Polymerization Method

  • Iwasaki, Mitsunobu;Park, Won-Kyu
    • 한국재료학회지
    • /
    • 제17권10호
    • /
    • pp.548-554
    • /
    • 2007
  • [ $BaTiO_3$ ] thick film by an interfacial polymerization method was prepared at the liquid/liquid interface between benzyl alcohol saturated solution with the basic catalyst [diethyl amine ($NHEt_2$) or triethylamine ($NEt_3$)], and the water dissolved with $TiO_2$ and $Ba(CH_3COO)_2$. The film thickness increased gradually with an increase in diethyl amine($NHEt_2$) or triethylamine($NEt_3$) volume and the reaction time. The homogeneity of $BaTiO_3$ thick film after sintered at $600^{\circ}C$ was confirmed by EPMA analysis, which showed that both of Ba and Ti element were homogeneously distributed on the surface as well as in the perpendicular direction of the film. The thickness of $BaTiO_3$ film obtained by this process was $8.75\;{\mu}m$.