• Title/Summary/Keyword: Basic Physical Properties

Search Result 613, Processing Time 0.03 seconds

The Change of Hair Physical and Mechanical Properties according to Permanent Wave Treatment Method (퍼머넌트 웨이브 시술방법에 따른 모발의 물리적·역학적 특성 변화)

  • Yoo, Tae-Soon;Kim, Jung-Hae;Jung, Youn
    • Fashion & Textile Research Journal
    • /
    • v.8 no.4
    • /
    • pp.441-448
    • /
    • 2006
  • This research is the hair damage as treating a permanent wave before and after that is compared and analyzed the change of physical and mechanical properties. This is the survey of women's hair in 20 years old. On the basis of this we would like to analyze a extend of hair damage. Also, we would to show a basic data for hair damage prevention and hair improvement to keep the beautiful and healthy hair. The conclusion is as follow. : The swelling degree after the treatment was found to be greater than before permanent wave treatment. For the formational characteristics wave, untreated hair certainly had more elastic S curl wave than damaged hair in all the permanent wave treatments, and damaged hair and extremely damaged hair had less elasticity and had saggy S curl wave. The protein permanent and soft permanent wave had thicker, gorgeous, and better elastic wave than the regular permanent wave and direct heating permanent wave in all the hair condition. As the degree of damage on hair got greater, the tensile strength dramatically decreased and as the degree of damage got greater, the elongation was great as well. For treatment method, direct heating permanent wave showed the greatest effect, causing the most damage.

Strength Estimation of Ready-Mixed Concrete Using Crushed Sand (부순모래를 사용한 레디믹스트 콘크리트의 배합설계 및 강도추정방법)

  • Suh, Jin-Kook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • It is difficult to keep the balance of supply and demand for natural aggregates in recent years, because natural resources have become to be almost exhausted. Crushed stone is already used for coarse aggregate instead of river gravel at present. Now, crushed sand or sea sand should be used for fine aggregate, because natural sand also has been exhausted with a few exceptions around Nakdong River. The sea sand has a lot of problems which are the corrosion of reinforcement bars, the investment of facility for cleansing salt and the cost increase due to the insufficiency of industrial water. Therefore, it is necessary to produce and to utilize the crushed sand very actively, but some material properties which are related to water absorption, strength and chemical durability, prevent from determining the generalized criteria because its rocks make much differences in its physical and chemical characteristics. In this paper, fundamental physical properties of crushed sand, which comes from Daegu Subway construction fields, have been investigated for the usability on basic material of concrete. The optimum replacement ratio and the strength estimation method of crushed sand replacing natural sand also have been presented here through the compressive strength test of ready-mixed concrete cylinders.

  • PDF

The Physical Properties and Dyeability of the Degummed and Sericin Fixed Silk Fabrics (정련 및 세리신 정착처리 견직물의 물리적 성질과 염색성)

  • 이은미;이혜자;유혜자
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.517-523
    • /
    • 2003
  • We studied the physical properties of silk fabrics after degumming, the dyeability and the color fastness of silk fabrics after degumming and sericin fixing. As the sericin was removed from silk fabrics, the rate of weight loss increased and both the abrasion resistance and the drape coefficient decreased. This means that the amount of the sericin remained in silk fabrics significantly affects the physical properties of silk fabrics. On the surface and the cross-section of silk fabrics, the silk fibers enclosed by the sericin seemed to be in a lump shape. Each fibroin strand, however, got scattered, as the process of degumming went through. The dyeability of silk fabrics degummed decreased at between 20$^{\circ}C$∼80$^{\circ}C$ the dyeing temperature, on the other hand, it significantly increased over 80$^{\circ}C$. The dyeability of the sericin-fixed silk fabrics was lower than that of the non-serin-fixed silk fabrics, to a little extent. The colorfastness of crocking in the dyed-silk fabrics was a little low and that of the sweat was much lower in a basic sweat. Especially, the colorfastness of the partially degummed silk fabrics was low, because the sericin was not stable in the condition of sweat. Therefore, the process of sericin fixing is essentially required, for the partially degummed silk fabrics and the process of degumming itself.

Changes in Chemical Components and Physical Properties with Freeze Drying and Hot Air-Drying of Dioscorea batatas (동결건조 및 열풍건조 방법에 따른 마의 성분과 물리적 성질 변화)

  • 권중호;이기동;이수정;정신교;최종욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.908-913
    • /
    • 1998
  • Chemical components and some physical proeprties of fresh, defrosted and dried yams(Dioscoreab batatas) were determined to obtain basic data for high quality yam processing. Fresh yam showed 81.79% moisture and 15.24% N-free extract. The cohesiveness and adhesiveness of defrosted yam homogenate were significantly higher than those of fresh yam homogenate. Free sugars of yam were mainly composed of sucrose, rhamnose, fructose and glucose, and the contents of fructose and glucose were apparently decreased by hot air drying. Linoleic(45.64%), oleic(8.32%), and arachidic acids(7.40%) were major fatty acids of yam. Hot air drying caused a decrease in unsaturated fatty acids and an increase in saturated acids. Hot air-dried yam powder showed higher gelatinization properties than freeze-dryed yam powder, such asinitial pasting temperature, temperature at maximum viscosity, and viscosity at different parameters. Hot air-dried yam powder showed higher Hunter parameter b and ΔE values and lower L value than freeze-dried one.

  • PDF

The Measurement of Physical Properties of Outdoor Exposed Members

  • Kim, Gwang-Chul;Kim, Jun-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.311-323
    • /
    • 2019
  • The number of newly constructed traditional Korean houses, i.e., Hanoks, and light-frame buildings is increasing. However, related research is limited owing to the lack of awareness regarding safety evaluations. Therefore, this study conducted an outdoor exposure test to accurately evaluate wooden constructions. Spruce, pine, and fir (SPF) material was monitored for a year, wherein the SPF material was artificially dried under 18% moisture content, and its physical properties and color differences were measured once a month. Large differences were observed in the material's weight and moisture content, which are indexes sensitive to daily range and rainfall; however, no significant difference was found for other basic properties in the pre and post test results. Herein, $L^*$, $a^*$, and $b^*$ values represent color differences; these values exhibited a general decrease after the test. Such differences were attributed to the loss of lignin in the wood. The color difference value was high between the months of May and July, when the daily range and rainfall significantly fluctuated. Multiple regression analysis was performed on the $a^*$ value (redness indicator), daily range, rainfall, and ultraviolet index. The results indicated that the daily range influenced redness the most. According to the estimated regression equation, the daily range and redness are positively correlated. Based on the results, the types and influence of independent variables on color difference are expected to change as the wood's duration of outdoor exposure and the amount of data obtained both increase.

Soil Physical and Hydraulic Properties over Terrace Adjacent Four Major Rivers

  • Lee, Kyo Suk;Lee, Jae Bong;Lee, Myoung Yun;Joo, Ri Na;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • The soil does not only serve as a medium for plant growth but also for engineering construction purposes. It is very weak in tension, very strong in compression and fails only by shearing. The behaviour of the soil under any form of loading and the interactions of the earth materials during and after any engineering construction work has a major influence on the success, economy and the safety of the work. Soils and their management have therefore become a broad social concern. A limitless variety of soil materials are encountered in both agronomy and engineering problems, varying from hard, dense, large pieces of rock through gravel, sand, silt and clay to organic deposits of soft compressible peat. All these materials may occur over a range of physical properties, such as water contents, texture, bulk density and strength of soils. Therefore, to deal properly with soils and soil materials in any case requires knowledge and understanding of these physical properties. The desired value of bulk density varies with the degree of stability required in construction. Bulk density is also used as an indicator of problems of root penetration,soil aeration and also water infiltration. This property is also used in foundation engineering problems. While not conforming to standard test procedures, this work attempts to add to the basic information on such important soil parameters as water content, bulk density.

A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding

  • Qiu, Bowen;Wang, Jun;Deng, Yangbin;Wang, Mingjun;Wu, Yingwei;Qiu, S.Z.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • At present, the Department of Energy (DOE) in Unite State are directing the efforts of developing accident tolerant fuel (ATF) technology. As the first barrier of nuclear fuel system, the material selection of fuel rod cladding for ATFs is a basic but very significant issue for the development of this concept. The advanced cladding is attractive for providing much stronger oxidation resistance and better in-pile behavior under sever accident conditions (such as SBO, LOCA) for giving more coping time and, of course, at least an equivalent performance under normal condition. In recent years, many researches on in-plie or out-pile physical properties of some suggested cladding materials have been conducted to solve this material selection problem. Base on published literatures, this paper introduced relevant research backgrounds, objectives, research institutions and their progresses on several main potential claddings include triplex SiC, FeCrAl and MAX phase material Ti3SiC2. The physical properties of these claddings for their application in ATF area are also reviewed in thermohydraulic and mechanical view for better understanding and simulating the behaviors of these new claddings. While most of important data are available from publications, there are still many relevant properties are lacking for the evaluations.

Electrical Properties of Ag-coated Conductive Yarns Depending on Physical and Chemical Conditions (물리화학적 조건에 따른 은코팅 전도사의 전기적 특성)

  • Ryu, Jong-Woo;Jee, Young-Joo;Kim, Hong-Jae;Kwon, Seo-Yoon;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.23 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • Electrically conductive yarn coated with silver particles are widely used to make smart wear but recent studies on smart fabrics are focused on measuring method of electrical characteristics and improving technologies of its electric properties. Also durability of conductive yarn with environmental change was also important work to make smart fabric. We compared resistance changes of silver coated conductive yarns under various physical and chemical conditions such as repeated strain, heat exposure and pH for basic informations on smart wear manufacturing process. And we deduct that repeated strain among the physical conditions was most effective factors on yarn resistance change and the low resistance change was observed with increasing the number of filaments in identical yarn fineness.

Latest analysis methods for the next generation of nano devices using multi-disciplinary in situ Nano-Surface Analytical System (표면분석 장비를 활용한 차세대 나노소자 물성분석)

  • Lee, Jouhahn
    • Vacuum Magazine
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • The new materials such as graphene and other nano scale structured materials are attracting great attention due to its expandability for the future electronic devices. In this presentation, a variety of analysis techniques will be introduced for the latest new material applications such as graphene and organic materials with number of metals. The basic properties of next generation device should be carefully analyzed without being exposed to ambient surrounding since the physical and chemical properties of new material or interface states are easily and drastically changed by ambient condition. With the combination of the fabrication process and precise analysis instruments, it is expected to set the facilities supporting the nanotechnology industry and other research groups. This system will give strong support nanotechnology and other complex science with qualified data and information on basic knowledge on the new-forthcoming materials for the future.

Preparation and Hydrogen Permeability of SiC-Y2O3 Composite Membranes

  • Son, Boyoung;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.495-497
    • /
    • 2013
  • SiC-$Y_2O_3$ porous composites were fabricated using $Y_2O_3$ powders synthesized by sol-gel process to control physical and thermo-chemical properties. $Y_2O_3$ powders were mixed with SiC powders by co-pressing with HPCS (hydridopolycarbosilane) binder at moderate temperature. The properties of membranes were characterized by XRD, FE-SEM, and BET surface analysis. Hydrogen permeability was performed at various temperatures.