• Title/Summary/Keyword: Basic Physical Properties

Search Result 613, Processing Time 0.03 seconds

Egg shells and oyster shells for use on fireproof boards Study of physical and chemical properties (내화보드에 사용하기 위한 계란 껍데기 및 굴 패각의 물리적 화학적 특성 연구)

  • Shin, Dong Uk;Shin, Jong-Hyun;Kim, Han-Nah;Hong, Sang Hun;Jung, Ui In;Kim, Bong Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.46-47
    • /
    • 2020
  • Oyster shells and egg shells consist of CaCO3, which is known to have excellent fire performance as the main component, and research is currently being conducted as a fireproof board material. Therefore, in this study, the physical and chemical properties of oyster shell powder and egg shell powder are studied to find out the applicability of fireproof board

  • PDF

Synthesis and spectroscopic characterization of zinc ferrite nanoparticles

  • Arora, Shefali;Nandy, Subhajit;Latwal, Mamta;Pandey, Ganesh;Singh, Jitendra P.;Chae, Keun H.
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.437-451
    • /
    • 2022
  • Synthesis approaches usually affect the physical and chemical properties of ferrites. This helps ferrite materials to design them for desired applications. Some of these methods are mechanical milling, ultrasonic method, micro-emulsion, co-precipitation, thermal decomposition, hydrothermal, microwave-assisted, sol-gel, etc. These methods are extensively reviewed by taking example of ZnFe2O4. These methods also affect the microstructure and local structure of ferrite which ultimately affect the physical and chemical properties of ferrites. Various spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Ultra Violet-Visible spectroscopy, Mossbauer spectroscopy, extended x-ray absorption fine structure, and electron paramagnetic resonance are found helpful to reveal this information. Hence, the basic principle and the usefulness of these techniques to find out appropriate information in ZnFe2O4 nanoparticles is elaborated in this review.

Effect of palm oil on the basic geotechnical properties of kaolin

  • Sriraam, Anirudh Subramanya;Raghunandan, Mavinakere Eshwaraiah;Ti, Tey Beng;Kodikara, Jayantha
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.179-188
    • /
    • 2019
  • This paper presents an experimental study to evaluate the effect of palm oil on the selected basic physical-chemical and geotechnical properties of kaolin. The experimental findings are further compared with literature outcomes investigating similar properties of fine grained soils subjected to contamination by different types of oils. To this end, palm oil was mixed with oven dried kaolin samples-aiding oil's interaction (coating) with dry particles first, in anticipation to emphasize the effect of oil on the properties of kaolin, which would be difficult to achieve otherwise. Oil content was limited to 40% by dry weight of kaolin, supplemented at intervals of 10% from clean kaolin samples. Observations highlight physical particle-to-particle bonding resulting in the formation of pseudo-silt sized clusters due to palm oil's interaction as evinced in the particle size distribution and SEM micrographs. These clusters, aided by water repellency property of the oil coating the kaolin particles, was analyzed to show notable variations in kaolin's consistency-measured as liquid and plastic limits. Furthermore, results from compaction tests indicates contribution of oil's viscosity on the compaction behavior of kaolin - showing decrease in the maximum dry unit weight (${\gamma}_{d,max}$) and optimum moisture content ($w_{opt}$) values with increasing oil contents, while their decrease rates were directly and inversely proportional in ${\gamma}_{d,max}$ and $w_{opt}$ values with oil contents respectively. Comparative study in similar terms, also validates this lower and higher decrease rates in ${\gamma}_{d,max}$ and $w_{opt}$ values of the fine grained soils respectively, when subjected to contamination by oil with higher viscosity.

A Study on Change of Pleats Shape and Fabric Properties: Interactive Shape-folding E-textile with Arduino

  • Lee, Euna;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.18 no.3
    • /
    • pp.134-147
    • /
    • 2014
  • The aim of this study is to create smart wear that brings out the perspective person's individuality and creativity wearing these garments through various interactions. It is intended to build a prototype for a "Shape-folding Dress", which is length-adjustable skirt that responses with the environment of the wearer. In this process, four basic physical properties can be identified with fabric samples selected which are relatively stiff, including fusible interlining, organdy, silk, and ramie. In addition, two types of folding pattern specimens, "Basic Pattern" and "Diamond Pattern", and heat-steam were used to make the specimens so that the correlation could be calculated by recovery rate among flexing, stiffness and tensile properties. As a result, compared to other fabrics, the silk showed low stress to repeat folding and unfolding process, and its recovery rate of elongation deformation was stable without being affected by the different folding types and twice repeated process. In this study, forming a circuit using an Arduino, illuminance sensor, motors, and pulley, the prototype was created with a silk fabric.

A Study on the Subjective Evaluation and Physical Properties of Natural/Artificial Rabbit Hairs (천연 인조 토끼털의 주관적 평가 및 물리적 성질에 관한 연구)

  • Lee, Seon Ah;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.21 no.4
    • /
    • pp.144-158
    • /
    • 2017
  • Fur garment has long been the conventional symbol for luxury, or conspicuous consumption. However, as fashion items began to diversify as part of overall fashion trend, fur items are now more about individual taste and style than just lavishness. Synthetic fur is especially emerging as a new promising fashion material, with a touch almost like natural fur at an affordable price. Along with the emergence of 'Vegan Fashion' trend, synthetic fur is establishing itself as a popular fashion textile. This study is an attempt to investigate subjective evaluation and physical properties of natural and synthetic furs, whose results will further serve as basic data in developing synthetic fur materials. Sensory and emotional evaluations are carried out on natural and artificial furs. For analysis, factors such as weight, thickness, air permeability, gloss and compressibility were surveyed to observe how they influence the physical properties. According to the subjective evaluation, natural and artificial fur samples do not differ in conspicuous ways in appearance. Experiments on physical properties, specifically warm/cool touch experiment, show that natural fur has a slightly higher warm sensation than artificial fur. Luster analysis by using a microscope revealed that there are subtle qualitative differences between natural and artificial fur. During the subjective evaluation, subjects found it hard to state distinct quantitative differences in luster. A survey as a means of assessing qualitative differences in gloss seems to be necessary to complement the evaluation. Results from this study will potentially serve as resources for diversification of fashion product designs using synthetic fur.

Neurobiology and Neurobiomechanics for Neural Mobilization (신경가동성에 대한 신경생물학과 신경생역학적 이해)

  • Kim Jae-Hun;Yuk Goon-Chan;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • Nervous system is clinically important, and involved in most disorders directly or indirectly. It could be injury and be a source of symptoms. Injury of central or peripheral nervous system injury may affect that mechanism and interrupt normal function. An understanding of the concepts of axonal transport is important for physical therapist who treat injury of nerves. Three connective tissue layers are the endoneurium, perineurium, epineurium. Each has its own special structural characteristics and functional properties. The blood supply to the nervous system is well equipped in all dynamic and static postures with intrinsic and extrinsic vasculation. After nerve injury, alternations in the ionic compression or pressures within this environment may interfere with blood flow and, consequently conduction and the flow of axoplasm. The cytoskeleton are not static. On the contrary, elements of the cytoskeleton are dynamically regulated and are very likely in continual motion. It permits neural mobility. There are different axonal transport systems within a single axon, of which two main flows have been identified : First, anterograde transport system, Secondly, retrograde transport system. The nervous system adapts lengthening in two basic ways. The one is that the development of tension or increased pressure within the tissues, increased intradural pressure. The other is movements that are gross movement and movement occurring intraneurally between the connective tissues and the neural tissues. In this article, we emphasize the biologic aspects of nervous system that influenced by therapeutic approaches. Although identified scientific information in basic science is utilized at clinic, we would attain the more therapeutic effects and develop the physical therapy science.

  • PDF

Aerodynamic Properties of Granular Agrichemicals (입제 비료 및 농약의 공기역학적 성질)

  • 이성호;이중용;정창주;이채식
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.105-114
    • /
    • 1998
  • Granule application with a boom has merits of accurate application and high field efficiency. In order to develop a boom granule applicator, aerodynamic properties of agrichemicals should be investigated. This study was accomplished to investigate aerodynamic properties of granules and factors affecting on them. The tested agrichemicals were urea, compound fertilizer (17-21-17), sand and zeolite. Basic physical properties of granules such as true density, sphericity, and arithmetic mean diameter for those materials were analyzed. Regression equations for pickup velocity (v$_{p}$) and saltation velocity (v$_{s}$) were proposed by the data transformation and the multi-regression analysis as follows : (equation omitted) where, 0< s < 1, 0< λ$_{i}$< 3, 35 < D/d$_{p}$ < 350, 1000 $_{p}$/p$_{a}$ < 2500 The range of pickup velocity of fertilizers and other agrichemicals were shown to be 10-16m/s and 9-13m/s, respectively. The saltation velocity of fertilizer and other agrichemicals were 3 m/s and 4 m/s, respectively.y.ively.y.y.

  • PDF

Research Trends in the Nanoscale Friction and Surface Characteristics of Graphene (그래핀의 나노스케일 마찰 및 표면 특성에 대한 연구동향)

  • Yoon, Min-Ah;Kim, Kwang-Seop;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.151-163
    • /
    • 2021
  • Since the discovery of single-layer graphene, exploiting graphene's excellent physical/chemical properties in tribology systems has been a topic of interest in academia over the last few decades. There is no doubt that understanding the underlying friction mechanism of graphite should precede this. Even now, new properties of graphene are being reported in academia, and based on this, studies exploring the origins of graphene's surface properties and friction characteristics in a wide range of scales are also being performed. From the perspective of lubrication engineering, graphene research can be largely divided into studies that 1) reveal its basic friction mechanism at the nanoscale and 2) explore its application in macroscale sliding systems. At the nanoscale, the basic friction mechanism of graphene is mainly due to its atomic thickness. In this paper, the various research on the nanoscale friction and surface characteristics of graphene is reviewed. Graphene surface properties, such as wettability and surface energy and the basic friction mechanisms of graphene attributed to adhesion, electronphonon scattering, bending stiffness, and the underlying substrate, are summarized. Further, we provide the research outcomes on the superlubricity of graphene. Finally, the potential application and challenges of the superlubricity of graphene are highlighted. Through this, we intend to provide summarized information to researchers interested in the tribological properties of graphene and help set the direction of future research.

Evaluation of the Basic Property Evaluation of Eco-powder, a Hydrothermal Synthesis Product for Improving Waste Vinyl Recycling Efficiency (농촌 폐비닐 활용률 제고를 위한 수열합성 생성물인 에코 파우더(Eco-powder)의 기초물성 평가)

  • Sun-Mi Choi;Min-Chul Lee;Jin-Man Kim;Young-Gon Son;Nam-Ho Kim
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.48-57
    • /
    • 2024
  • This study aimed to improve utilization of the Class C vinyl waste generated in rural areas based on a preliminary investigation on the use of eco-powder, generated through pyrolysis, as a raw material for plastic. The efficiency of pre-processing treatments in controlling ash content of the generated eco-powder and its effect on the basic properties of manufactured plastic were evaluated. The basic properties included ash content of the compressed eco-powder at different levels of ash content, impact strength, flexural strength, and tensile strength. The experimental results confirmed that pre-processing improved the separation efficiency of soil particles and vinyl waste through physical impact. The eco-powder with ash content of less than or equal to 26% was found to satisfy the target performance during impact strength, flexural strength, and tensile strength evaluation. Thus, it was confirmed that the Class C vinyl waste, having low utilization and recovery rates, could be effectively utilized as a plastic raw material after optimum thermal treatment and physical processing using the eco-powder.

Fiber Morphology and Physical Characteristics of Gigantochloa atter at Three Different Ages and Heights of Culms for Better Utilization

  • Marsoem, Sri Nugroho;Setiaji, Fajar;Kim, Nam-Hum;Sulistyo, Joko;Irawati, Denny;Nugroho, Widyanto Dwi;Pertiwi, Yus Andini Bekti
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.145-155
    • /
    • 2015
  • Fiber morphology and basic characteristics of Legi bamboos (Gigantochloa atter) growing on Yogyakarta were studied considering their age and height positions in the culms. Culms of 4, 16, and 40 months were harvested, and their total lengths were measured. The length, diameter, and wall thickness of each internode were measured. All the sample culms were divided into three different parts along the height, and their fiber dimension and physical properties were observed. The data obtained were analyzed by analysis of variance. The results showed that the culms had a diameter of 5.8 to 10.8 cm. The lowest internodes always showed the shortest length and the thickest wall. The culms had an average fiber length of 2.41 mm and Runkel ratio of 0.61. Fiber length was affected by the height, while fiber diameter, lumen diameter, and fiber wall thickness were affected significantly by the age of the culms. The culms had high green moisture content (GMC) of 157.89%, and basic density (BD) of $456.67kg.m^{-3}$, a total longitudinal shrinkage of 0.35%, and relatively low R/T shrinkage ratio. The interactions between age and height were affected GMC and BD.